Establishing the Greater Food Approach and promoting the Yangtze River Economic Belt s national major regional development strategy can better support and serve the agricultural power and Chinese-style modernization.T...Establishing the Greater Food Approach and promoting the Yangtze River Economic Belt s national major regional development strategy can better support and serve the agricultural power and Chinese-style modernization.This paper introduces the characteristics of fruit industry in 16 autonomous prefectures and 47 autonomous counties under the jurisdiction of the Yangtze River Economic Belt.It studies the intellectual property resources of brand marks from the aspects of geographical indications,collective trademarks,certification trademarks,well-known trademarks in China and national design patents,and analyzes the main problems of brand and high-quality development of fruit industry in these ethnic autonomous areas.Finally,it puts forward some strategies,such as improving the protection of intellectual property rights of geographical indications,using intellectual property rights of brand signs,building modern seed industry upgrading project,drawing lessons from the experience of thousand villages demonstration project,ensuring that large-scale poverty does not occur,and building a diversified food supply system.展开更多
The ecological footprint was employed as a quantitative indicator of resource inputs,enabling a detailed account of the structure of biological resources and energy occupancy,as well as the variation of resource produ...The ecological footprint was employed as a quantitative indicator of resource inputs,enabling a detailed account of the structure of biological resources and energy occupancy,as well as the variation of resource productivity in the Yangtze River Delta(YRD)Region.From 2004 to 2018,there were notable variations in the ecological productivity of different types of land on basis of China’s equilibrium factor across the three provinces and one city in the YRD region.Jiangsu Province exhibited the highest ecological productivity of arable land,while Anhui Province exhibited the highest ecological productivity of forest land.Shanghai City exhibited the highest ecological productivity of pasture land,while Zhejiang Province exhibited the highest ecological productivity of water area.In 2018,the proportion of arable land within the total ecological carrying capacity of the YRD region reached 74.35%.Furthermore,the contribution of Jiangsu and Anhui provinces to the YRD’s total ecological carrying capacity was 41.36%and 41.26%,respectively.In the construction of a new development pattern in the YRD region,which is dominated by the domestic cycle as the main body and mutually reinforced by domestic and international double-cycle,the YRD region should combine the utilization of natural forces with innovation in science,technology and cooperation mechanisms.Furthermore,the government should guide the concentration of social capital towards green industries.It is also recommended that the moderate reduction of ecological footprints should be encouraged,and that the security of biological resources and energy,the leadership in the field of cutting-edge science and technology should be ensured in YRD region.This will facilitate the formation of a new development pattern of higher-quality integration at the national level firstly.展开更多
After analysis of location feature of the south of lower reaches of Yangtze River and its construction of urban and rural integration,the paper pointed out harmonious combination between natural and artificial factors...After analysis of location feature of the south of lower reaches of Yangtze River and its construction of urban and rural integration,the paper pointed out harmonious combination between natural and artificial factors had been neglected in planning and design of farmers' residential area at the south of lower reaches of Yangtze River,"regional characteristic" losing,residential area in the form of "city community" and buildings in European style.In view of these problems,relevant planning and design thoughts and methods had been proposed as to how to create "regional characteristic" from the perspective of planning,architecture and landscape design.It discussed with emphasis the importance of construction base type and combination of environment with residential area construction;inspirations and design methods obtained from traditional architectures;and the content of landscape overall planning and specific design.It was hoped to enlighten designers to shoulder social and historical responsibility,make exploration unremittingly,and construct beautiful homelands for people.展开更多
Based on geographical and hydrological extents delimited, four principles are identified, as the bases for delineating the ranges of the source regions of the Yangtze and Yellow rivers in the paper....Based on geographical and hydrological extents delimited, four principles are identified, as the bases for delineating the ranges of the source regions of the Yangtze and Yellow rivers in the paper. According to the comprehensive analysis of topographical characteristics, climate conditions, vegetation distribution and hydrological features, the source region ranges for eco-environmental study are defined. The eastern boundary point is Dari hydrological station in the upper reach of the Yellow River. The watershed above Dari hydrological station is the source region of the Yellow River which drains an area of 4.49×10 4 km 2 . Natural environment is characterized by the major topographical types of plateau lakes and marshland, gentle landforms, alpine cold semi-arid climate, and steppe and meadow vegetation in the source region of the Yellow River. The eastern boundary point is the convergent site of the Nieqiaqu and the Tongtian River in the upstream of the Yangtze River. The watershed above the convergent site is the source region of the Yangtze River, with a watershed area of 12.24×10 4 km 2 . Hills and alpine plain topography, gentle terrain, alpine cold arid and semi-arid climate, and alpine cold grassland and meadow are natural conditions in the source region of the Yangtze River.展开更多
This paper studies the relationship between net primary productivity (NPP) and annual average air temperature (GT) at 0cm above ground in permafrost regions by using revised Chikugo NPP model,cubic spline interpolatin...This paper studies the relationship between net primary productivity (NPP) and annual average air temperature (GT) at 0cm above ground in permafrost regions by using revised Chikugo NPP model,cubic spline interpolating functions,and non-linear regression methods.The source regions of the Yangtze and Yellow Rivers were selected as the research areas.Results illustrate that:(1) There is significant non-linear relationship between NPP and GT in various typical years;(2) The maximum value of NPP is 6.17,5.87,7.73,and 5.41 DM·t·hm-2 ·a-1 respectively,and the corresponding GT is 7.1,10.0,21.2,and 8.9 o C respectively in 1980,1990,2000 and 2007;(3) In 1980,the sensitivity of NPP to GT is higher than in 1990,2000 and 2007.This tendency shows that the NPP presents change from fluctuation to an adaptation process over time;(4) During 1980~2007,the accumulated NPP was reduced to 8.05,and the corresponding carrying capacity of theoretical livestock reduced by 11%;(5) The shape of the demonstration region of ecological compensation system,livelihood support system,and science appraisal system in the source regions of Yangtze and Yellow Rivers are an important research for increasing the adaptation capacity and balancing protection and development.展开更多
Permafrost is one of the key components of terrestrial ecosystem in cold regions. In the context of climate change, few studies have investigated resilience of social ecological system(SER) from the perspective of per...Permafrost is one of the key components of terrestrial ecosystem in cold regions. In the context of climate change, few studies have investigated resilience of social ecological system(SER) from the perspective of permafrost that restricts the hydrothermal condition of alpine grassland ecosystem. In this paper, based on the structural dynamics, we developed the numerical model for the SER in the permafrost regions of the source of Yangtze and Yellow Rivers, analyzed the spatial-temporal characteristics and sensitivity of the SER, and estimated the effect of permafrost change on the SER. The results indicate that: 1) the SER has an increasing trend, especially after 1997, which is the joint effect of precipitation, temperature, NPP and ecological conservation projects; 2) the SER shows the spatial feature of high in southeast and low in northwest,which is consistent with the variation trends of high southeast and low northwest for the precipitation, temperature and NPP, and low southeast and high northwest for the altitude; 3) the high sensitive regions of SER to the permafrost change have gradually transited from the island distribution to zonal and planar distribution since 1980, moreover, the sensitive degree has gradually reduced; relatively, the sensitivity has high value in the north and south, and low value in the south and east; 4) the thickness of permafrost active layer shows a highly negative correlation with the SER. The contribution rate of permafrost change to the SER is-4.3%, that is, once the thickness of permafrost active layer increases 1 unit, the SER would decrease 0.04 units.展开更多
Mountain areas are often rich in ecological diversity and recreational opportunities. Mountain tourism is thought to be an effective and important means for maintaining and expanding rural economies and, thus, improvi...Mountain areas are often rich in ecological diversity and recreational opportunities. Mountain tourism is thought to be an effective and important means for maintaining and expanding rural economies and, thus, improving the living conditions of rural societies. As mountain tourism service research is a professional field with several disciplines involved, a multi-disciplinary management pIatform is needed and it facilitates participation in sustainable mountain development by diverse stakeholders. With the source regions of the Yangtze and the Yellow River as a case study, this paper presents a conceptual framework for an adaptation management of mountain tourism services according to technical, policy, social and economic dimensions. The framework is based on a vulnerability assessment of mountain ecosystems, and can serve as a reference for the development of tourism service in other mountain areas.展开更多
Historic blocks that focus only on protection of tangible constructed environment have shown various disadvantages and gradually lost their originality, according to the investigation. Protection of historic blocks sh...Historic blocks that focus only on protection of tangible constructed environment have shown various disadvantages and gradually lost their originality, according to the investigation. Protection of historic blocks should attach more importance to maintaining original lifestyles and community customs, protecting intangible contents and cultural diversity. The authors proposed that protection of historic blocks should follow the principle of "putting protection and repair on the top priority, using reasonably" and stress the "living" protection. There are three patterns of "living" protection, specifically, joint participation of local residents, construction of education base, moderate tourism development. Vitality of local economy can be enhanced and social humanistic environment protected effectively by improving the locals' living environment, so as to show true care for the people living in the historic block, and bring historic blocks to the real life.展开更多
Based on a database of more than 40 years of second production process and energy flow records for Maduo,Qumalai and Yushu counties,a dynamic model of the stress within grassland ecosys-tems was established using a no...Based on a database of more than 40 years of second production process and energy flow records for Maduo,Qumalai and Yushu counties,a dynamic model of the stress within grassland ecosys-tems was established using a nonlinear regression method for this source regions of the Yangtze and Yel-low Rivers.The results show that dynamic curves of stress within grassland ecosystems in the three coun-ties were in the shape of an inverted 'U' during the period 1965-2007.It also revealed that the variation in actual amount of livestock inventories reflected the general trends of the stress within the grassland eco-systems in the source regions,although there were many other factors for the increase or reduction in grassland ecosystem stress.展开更多
Dissolved inorganic nutrient elements were analyzed from the samples collected in the South Passage of the Changjiang (Yangtze River) Estuary in March 2003, including NH4+, NO3-, NO2- and PO43-. The water samples were...Dissolved inorganic nutrient elements were analyzed from the samples collected in the South Passage of the Changjiang (Yangtze River) Estuary in March 2003, including NH4+, NO3-, NO2- and PO43-. The water samples were collected with a Niskin sampler hourly at the near-surface, middle and near-bottom depths at the three stations -A1, A2 and A3-during two complete tidal cycles of neap tide and spring tide. Results showed that 1) the concentrations of NH4+, NO3- and NO2- were a little higher respectively during the neap tide than those during the spring tide, while PO43- showed an opposite trend, and each was higher in the ebb tide than in the flood tide, either for the neap tidal cycle or the spring tidal cycle; 2) higher stratification of the nutrients existed obviously in this area, with the concentrations of which increased from the bottom to the surface, especially for NH4+ and NO3-; 3) the coefficient of variation (C.V.) values of all dissolved inorganic nutrients varied from 4.06% to 36.8% beyond different influences of the tidal current and Changjiang runoff; 4) with increasing suspended matter in the water column, the concentrations of PO43- became lower in the filtered water; and 5) the total transport of each tidal cycle was much more in the spring tide than in the neap tide, and the positive values indicated that the nutrients had been exported to the East China Sea. Studies on the variations and net transport of dissolved inorganic nutrients in the South Passage of the Changjiang Estuary will provide the scientific basis for the study of the mechanism of red tide in the East China Sea.展开更多
The source regions of the Yangtze and Yellow Rivers are important in the field of eco-environmental change research in China because of its distinct alpine ecosystem and cryosphere environment. At present, there are t...The source regions of the Yangtze and Yellow Rivers are important in the field of eco-environmental change research in China because of its distinct alpine ecosystem and cryosphere environment. At present, there are three different concepts on the extent of source areas of the Yangtze and Yellow Rivers: hydrological, geographical, and eco-environmental. Over the past decades, annual average air temperature has warmed significantly;moreover, the temperature rise rate increases notably with increase of time of the data series. Annual precipitation has no obvious increase or decrease trend, and the climate has become warm and dry in the source regions. As a result, the cryosphere in the regions has shrunk significantly since 1960 s. A warm and dry climate and changing cryosphere together induced a substantial declination of alpine wetlands, marked decrease in river runoff, significant degradation of alpine grassland, and a reduction of engineering stability.The ecological environment, however, has a tendency for restoration in the regions because the climate has become gradually warm and wet since 2000. Thus, studies on eco-environmental change is transforming from a single element to multidisciplinary integration. Climate change-cryopshere change-physical and socioeconomic impacts/risk-adaptation constitute a chain of multidisciplinary integration research.展开更多
Gardening style in south of the Yangtze River was reviewed, and aesthetic features of local gardens were summarized as full of humanistic connotations, modeling after the nature, graceful and free from vulgarity, refi...Gardening style in south of the Yangtze River was reviewed, and aesthetic features of local gardens were summarized as full of humanistic connotations, modeling after the nature, graceful and free from vulgarity, refined and refreshing, implying profound significance in detailed designs, integrated virtual and real scenery. On this basis, form and meaning of leaking windows in the gardens were analyzed, and artistic means of designing leaking windows were summarized from the perspectives of leaking through scenery and borrowed scenery, virtual and real scenery, in-motion and in-position scenery.展开更多
In the transitional period between the Middle and the Late Triassic, the Indochina orogeny caused two tectonic events in South China:(1) the formation and uplift of the Qinling-Dabie orogenic belt along the norther...In the transitional period between the Middle and the Late Triassic, the Indochina orogeny caused two tectonic events in South China:(1) the formation and uplift of the Qinling-Dabie orogenic belt along the northern margin of the South China Plate, due to its collision with the North China Plate; and 2) the development of a 1300-km-wide intra-continental orogen in the southeastern part of the South China Plate, which led to a northwestward movement of the foreland thrust-fold zone. These tectonic events resulted in the ending of the Yangtze Platform, and were a stable paleogeographic factor from the Eidacaran to the end of the Middle Triassic. This platform was characterized by the widespread development of shallow-water carbonates. After the end of the Yangtze Platform, the upper Yangtze foreland basin(or Sichuan foreland basin) was formed during the Late Triassic and became a accumulation site of fluvial deposits that are composed of related strata of the Xujiahe Formation. In western Sichuan Province, the Xujiahe Formation overlies the Maantang Formation shallow-water carbonate rocks of the Xiaotangzi Formation siliciclastic rocks(from shelf shales to littoral facies). The sequence-stratigraphic framework of the Upper Triassic in the upper Yangtze foreland basin indicates a particular alluvial architecture, characterized by sequences composed of(1) successions of low-energy fluvial deposits of high-accommodation phases, including coal seams, and(2) high-energy fluvial deposits of low-accommodation phases, including amalgamated river-channel sandstones. The spatial distribution of these fluvial deposits belonging to the Xujiahe Formation and its relative strata is characterized by gradual thinning-out, overlapping, and pinching-out toward both the east and south. This sedimentary record therefore expresses a particular sequence-stratigraphic succession of fluvial deposits within the filling succession of the foreland basin. The sequence-stratigraphic framework for the Upper Triassic in the Upper Yangtze region provides a record of the end of the Yangtze Platform and the formation of the upper Yangtze foreland basin.展开更多
In a given district, the accessibility of any point should be the synthetically evaluation of the internal and external accessibilities. Using MapX component and Delphi, the author presents an information system to ca...In a given district, the accessibility of any point should be the synthetically evaluation of the internal and external accessibilities. Using MapX component and Delphi, the author presents an information system to calculate and analyze regional accessibility according to the shortest travel time, generating thus a mark diffusing figure. Based on land traffic network, this paper assesses the present and the future regional accessibilities of sixteen major cities in the Yangtze River Delta. The result shows that the regional accessibility of the Yangtze River Delta presents a fan with Shanghai as its core. The top two most accessible cities are Shanghai and Jiaxing, and the bottom two ones are Taizhou (Zhejiang province) and Nantong With the construction of Sutong Bridge, Hangzhouwan Bridge and Zhoushan Bridge, the regional internal accessibility of all cities will be improved. Especially for Shaoxing, Ningbo and Taizhou (Jiangsu province), the regional internal accessibility will be decreased by one hour, and other cities will be shortened by about 25 minutes averagely. As the construction of Yangkou Harbor in Nantong, the regional external accessibility of the harbor cities in Jiangsu province will be speeded up by about one hour.展开更多
The Upper Ordovician Wufeng-Lower Silurian Longmaxi and the Lower Cambrian Qiongzhusi shales are the major targets for shale gas exploration and development in China.Although the two organic-rich shales share similar ...The Upper Ordovician Wufeng-Lower Silurian Longmaxi and the Lower Cambrian Qiongzhusi shales are the major targets for shale gas exploration and development in China.Although the two organic-rich shales share similar distribution ranges and thicknesses,they exhibit substantially different exploration and development results.This work analyzed the nanopore structures of the shale reservoirs in this region.Pore development of 51 shale samples collected from various formations and locations was compared using the petromineralogical,geochemical,structural geological and reservoir geological methods.The results indicate that the reservoir space in these shales is dominated by organic pores and the total pore volume of micropores,mesopores,macropores in different tectonic areas and formations show different trends with the increase of TOC.It is suggested that organic pores of shale can be well preserved in areas with simple structure and suitable preservation conditions,and the shale with smaller maximum ancient burial depth and later hydrocarbongeneration-end-time is also more conducive to pore preservation.Organic pore evolution models are established,and they are as follows:①Organic matter pore development stage,②Early stage of organic matter pore destruction,and③late stage of organic matter pore destruction.The areas conducive to pore development are favorable for shale gas development.Research results can effectively guide the optimization and evaluation of favorable areas of shale gas.展开更多
This report provides a broad overview of the climate and the major weather and climate events over the Three Gorges Region of the Yangtze River(TGR)in 2019.The year 2019,a 0.3℃ warmer year than normal,had a colder wi...This report provides a broad overview of the climate and the major weather and climate events over the Three Gorges Region of the Yangtze River(TGR)in 2019.The year 2019,a 0.3℃ warmer year than normal,had a colder winter and warmer spring,summer,and autumn.Annual precipitation in 2019 was 13%less than normal.Below average normal rainfall amounts were received in all four seasons,with 28%and 16%less-than-normal in winter and summer,respectively.The annual mean wind speed in the TGR was higher than normal,and relative humidity was near normal for all four seasons.The intensity of acid rain in 2019 was the weakest since 1999.The major climate events and meteorological disasters in the TGR in 2019 included heat waves,drought,and rainstorms.Heat waves occurred frequently and persisted for long durations.Summer and autumn drought occurred in central and eastern regions of the TGR.The autumn rains of West China occurred earlier this year,which brought much more rainfall than normal in central and western regions of the TGR.展开更多
This report provides a summary of the climate, as well as the major weather and climate events,over the Three Gorges Region of the Yangtze River(TGR) in 2018. The annual mean temperature over the TGR in 2018 was 0.2℃...This report provides a summary of the climate, as well as the major weather and climate events,over the Three Gorges Region of the Yangtze River(TGR) in 2018. The annual mean temperature over the TGR in 2018 was 0.2℃ above normal, and precipitation was near normal. Seasonal highlights included a second warmest spring in the 58-year period of records, with abundant rainfall, which resulted in the wettest March on record. Furthermore, this was the fourth-warmest summer on record in the TGR, which contributed a higher-than-normal number of hot days in2018. Precipitation was 17% and 30% less-than-normal in winter and summer, and 40% and 6% above average in spring and autumn, respectively. The annual mean wind speed in the TGR was higher than normal, and the annual mean relative humidity was near normal. The intensity of acid rain was relatively weak, being the second-weakest year since 1999. The major meteorological disaster types in the TGR include heat waves, drought, rainstorms and flooding, freezing rain, and snow. Heat waves occurred early in the summer and persisted for long durations with strong intensities. Long-term precipitation deficits resulted in drought conditions in summer 2018 across most regions of the TGR. Frequent heavy rainfall caused urban waterlogging. The early-year and late-year cold snaps were accompanied by heavy snowfall and rain over some locations across the TGR, which had adverse impacts on transportation, agriculture, electricity, and people’s lives.展开更多
The Yangtze River Source Region has an area of 137,704 km2.Its mean annual runoff of 12.52 billion m3,which was recorded by the Chumda Hydrological Station in 1961–2000,accounts for only 0.13 percent of the Yangtze R...The Yangtze River Source Region has an area of 137,704 km2.Its mean annual runoff of 12.52 billion m3,which was recorded by the Chumda Hydrological Station in 1961–2000,accounts for only 0.13 percent of the Yangtze River's total annual streamflow.The extensive rivers,lakes,wetlands,glaciers,snow fields,and permafrost of the Yangtze River Source Region,as well as the region's vast alpine grasslands,play a critical role in storing and regulating the flow of water not only in the upper Yangtze River watershed of Qinghai,Sichuan,the Tibet Autonomous Region (TAR) (Tibet) and Yunnan,but also throughout the entire lower Yangtze River basin.Climate change has been the dominant factor in recent fluctuation in the volume of the Yangtze River Source Region's glacier resources.The Chumda Hydrological Station on the lower Tongtian River has registered a mean annual glacial meltwater of 1.13 billion m3 for the period 1961–2000,makes up 9 percent of the total annual runoff.Glacial meltwater makes up a significant percentage of streamflow in the Yangtze River Source Region,the major rivers of the upper Yangtze River Source Region:the Togto,Dam Chu,Garchu,and Bi Chu (Bu Chu) rivers all originate at large glaciers along the Tanggula Range.Glaciers in the Yangtze River Source Region are typical continental-type glaciers with most glacial meltwater flow occurring June–August;the close correlation between June–August river flows and temperature illustrates the important role of glacial meltwater in feeding rivers.Glaciers in the source region have undergone a long period of rapid ablation beginning in 1993.Examination of flow and temperature data for the 1961–2000 period shows that the annual melting period for glacial ice,snow,and frozen ground in the Yangtze River Source Region now begins earlier because of increasing spring temperatures,resulting in the reduction of summer flood season peak runoffs;meanwhile,increased rates of glacier ablation have resulted in more uneven annual distribution of runoff in the source region.The annual glacial meltwater runoff in the Yangtze River Source Region is projected to increase by 28.5 percent by 2050 over its 1970 value with the projected temperature increase of 2℃ and a precipitation increase of 29 mm.As a critical source of surface water for agriculture on the eastern Qinghai-Tibet Plateau and beyond,the mass retreat of glaciers in the Yangtze River Source Region will have enormous negative impacts on farming and livestock-raising ac-tivities in upper Yangtze River watershed,as well as on the viability of present ecosystems and even socioeconomic development in the upper Yangtze River Basin.展开更多
In 2020,the average air temperature in the Three Gorges Region(TGR)of the Yangtze River basin was 17.2℃,which was close to normal,there were exceptionally fewer days than normal with high temperatures,and the high-te...In 2020,the average air temperature in the Three Gorges Region(TGR)of the Yangtze River basin was 17.2℃,which was close to normal,there were exceptionally fewer days than normal with high temperatures,and the high-temperature events mainly occurred in August.Meanwhile,the average precipitation was 1530.8 mm,which was a remarkable 29%more than usual,and the second-highest since 1961.The precipitation was obviously above-normal in summer,and the precipitation in both June and July was the second-highest of the same period in history.The average number of rainstorm days was higher than normal,and the second-highest since 1961.The average wind speed in the TGR was apparently higher than normal;the average relative humidity was slightly higher than normal;and there were no instances of acid rain,with the rain acidity showing a significant weakening trend over the previous 15 years.In the summer of 2020,the TGR experienced heavy rainstorms and flood disasters.Analysis shows that the frequent southward movement of cold air and abundant warm water vapor from the southwest were the direct causes of the abnormally high precipitation in the TGR from June to July.After the spring of 2020,the continuously high sea surface temperature in the Indian Ocean led to a continuously strong western Pacific subtropical high and its average location being situated more to the south than normal,which might have been an important cause for the abnormal climate conditions in the Yangtze River basin from June to July.展开更多
In the Upper-Yangtze region, especially in Guizhou Province and its adjacent areas, the Lower Cambrian is well developed and is marked by a succession from black shales of the basin facies to carbonate rocks of the pl...In the Upper-Yangtze region, especially in Guizhou Province and its adjacent areas, the Lower Cambrian is well developed and is marked by a succession from black shales of the basin facies to carbonate rocks of the platform facies. The drowning event of the platform occurring at the turn from Sinian to Cambrian resulted in a set of black shales, i.e. the Niutitang Formation, which makes up the bottom part of the Lower Cambrian. With the shoaling of the sedimentary environment, a set of carbonate rocks, i.e. the Qingxudong Formation, was formed in the top part of the Lower Cambrian. Thus, the Lower Cambrian in the study area makes up one second-order sequence that can be further subdivided into five third-order sequences, and forms a regularly cyclic succession of transgression-regression. There is a regularly vertical stacking pattern for the third-order sequences in the second-order sequence. From bottom to top, the succession of the "CS (condensed section) +HST (high-stand system tract)" of the third-order sequences is changed into the succession of the "TST (transgressive system tract)+CS+HST". Correspondingly, the drowning-type sequence boundary is changed into the exposure-type one. Therefore, both the second-order and the third-order sequences have similar sedimentary-facies architectures. A concomitant with these temporal changes, the Lower Cambrian with a thickness of 1000 m that contains five third-order sequences is changed into a condensed succession that cannot identify third-order sequences toward the southeast with the deepening of the sedimentary environment. According to the elementary features of the third-order sequences, i.e. the regularity o sedimentary-facies successions in space and the synchronism of sedimentary-environment changes in time, the detailed division of the third-order sequences at main logged sections in different paleogeographical background becomes the basis to establish the sequence-stratigraphic framework that can demonstrate two types of facies-changing surface and two types of diachronism in the stratigraphic records. This sequence-stratigraphic framework shows a growing process of the carbonate platform from the base of the condensed succession formed by black shales of basin facies. Resulting from the rapid transgression at the turn from Sinian to Cambrian the ecological space became open, which formed the antecedent condition of paleogeographical setting for "the Cambrian Biological Explosion". Ultimately, the genetic relationship between the depositional events and the biological-diversity events is very complex and there remain lots of problems that need further research in the future.展开更多
基金Supported by Special Soft Science Research Project for Hubei Province Science and Technology Innovation Talents and Services(2022EDA060).
文摘Establishing the Greater Food Approach and promoting the Yangtze River Economic Belt s national major regional development strategy can better support and serve the agricultural power and Chinese-style modernization.This paper introduces the characteristics of fruit industry in 16 autonomous prefectures and 47 autonomous counties under the jurisdiction of the Yangtze River Economic Belt.It studies the intellectual property resources of brand marks from the aspects of geographical indications,collective trademarks,certification trademarks,well-known trademarks in China and national design patents,and analyzes the main problems of brand and high-quality development of fruit industry in these ethnic autonomous areas.Finally,it puts forward some strategies,such as improving the protection of intellectual property rights of geographical indications,using intellectual property rights of brand signs,building modern seed industry upgrading project,drawing lessons from the experience of thousand villages demonstration project,ensuring that large-scale poverty does not occur,and building a diversified food supply system.
基金Sponsored by Talent Project of Tongling University(2021tlxyrc27).
文摘The ecological footprint was employed as a quantitative indicator of resource inputs,enabling a detailed account of the structure of biological resources and energy occupancy,as well as the variation of resource productivity in the Yangtze River Delta(YRD)Region.From 2004 to 2018,there were notable variations in the ecological productivity of different types of land on basis of China’s equilibrium factor across the three provinces and one city in the YRD region.Jiangsu Province exhibited the highest ecological productivity of arable land,while Anhui Province exhibited the highest ecological productivity of forest land.Shanghai City exhibited the highest ecological productivity of pasture land,while Zhejiang Province exhibited the highest ecological productivity of water area.In 2018,the proportion of arable land within the total ecological carrying capacity of the YRD region reached 74.35%.Furthermore,the contribution of Jiangsu and Anhui provinces to the YRD’s total ecological carrying capacity was 41.36%and 41.26%,respectively.In the construction of a new development pattern in the YRD region,which is dominated by the domestic cycle as the main body and mutually reinforced by domestic and international double-cycle,the YRD region should combine the utilization of natural forces with innovation in science,technology and cooperation mechanisms.Furthermore,the government should guide the concentration of social capital towards green industries.It is also recommended that the moderate reduction of ecological footprints should be encouraged,and that the security of biological resources and energy,the leadership in the field of cutting-edge science and technology should be ensured in YRD region.This will facilitate the formation of a new development pattern of higher-quality integration at the national level firstly.
文摘After analysis of location feature of the south of lower reaches of Yangtze River and its construction of urban and rural integration,the paper pointed out harmonious combination between natural and artificial factors had been neglected in planning and design of farmers' residential area at the south of lower reaches of Yangtze River,"regional characteristic" losing,residential area in the form of "city community" and buildings in European style.In view of these problems,relevant planning and design thoughts and methods had been proposed as to how to create "regional characteristic" from the perspective of planning,architecture and landscape design.It discussed with emphasis the importance of construction base type and combination of environment with residential area construction;inspirations and design methods obtained from traditional architectures;and the content of landscape overall planning and specific design.It was hoped to enlighten designers to shoulder social and historical responsibility,make exploration unremittingly,and construct beautiful homelands for people.
基金Knowledge Innovation Project of CAS No. KZCX1-10-06
文摘Based on geographical and hydrological extents delimited, four principles are identified, as the bases for delineating the ranges of the source regions of the Yangtze and Yellow rivers in the paper. According to the comprehensive analysis of topographical characteristics, climate conditions, vegetation distribution and hydrological features, the source region ranges for eco-environmental study are defined. The eastern boundary point is Dari hydrological station in the upper reach of the Yellow River. The watershed above Dari hydrological station is the source region of the Yellow River which drains an area of 4.49×10 4 km 2 . Natural environment is characterized by the major topographical types of plateau lakes and marshland, gentle landforms, alpine cold semi-arid climate, and steppe and meadow vegetation in the source region of the Yellow River. The eastern boundary point is the convergent site of the Nieqiaqu and the Tongtian River in the upstream of the Yangtze River. The watershed above the convergent site is the source region of the Yangtze River, with a watershed area of 12.24×10 4 km 2 . Hills and alpine plain topography, gentle terrain, alpine cold arid and semi-arid climate, and alpine cold grassland and meadow are natural conditions in the source region of the Yangtze River.
基金supported by the National Basic Research Program of China (973 Program,Grant No. 2007CB411507 and Grant No.2010CB951704)
文摘This paper studies the relationship between net primary productivity (NPP) and annual average air temperature (GT) at 0cm above ground in permafrost regions by using revised Chikugo NPP model,cubic spline interpolating functions,and non-linear regression methods.The source regions of the Yangtze and Yellow Rivers were selected as the research areas.Results illustrate that:(1) There is significant non-linear relationship between NPP and GT in various typical years;(2) The maximum value of NPP is 6.17,5.87,7.73,and 5.41 DM·t·hm-2 ·a-1 respectively,and the corresponding GT is 7.1,10.0,21.2,and 8.9 o C respectively in 1980,1990,2000 and 2007;(3) In 1980,the sensitivity of NPP to GT is higher than in 1990,2000 and 2007.This tendency shows that the NPP presents change from fluctuation to an adaptation process over time;(4) During 1980~2007,the accumulated NPP was reduced to 8.05,and the corresponding carrying capacity of theoretical livestock reduced by 11%;(5) The shape of the demonstration region of ecological compensation system,livelihood support system,and science appraisal system in the source regions of Yangtze and Yellow Rivers are an important research for increasing the adaptation capacity and balancing protection and development.
基金supported by grants from the National Natural Science Foundation of China (Grant No. 41571523, and Grant No. 41661144038)the National Basic Research Program of China(Grant No. 2013CBA01808)the National Key Technology R&D Program of the Ministry of Science and Technology of China (Grant No. 2014BAC05B01)
文摘Permafrost is one of the key components of terrestrial ecosystem in cold regions. In the context of climate change, few studies have investigated resilience of social ecological system(SER) from the perspective of permafrost that restricts the hydrothermal condition of alpine grassland ecosystem. In this paper, based on the structural dynamics, we developed the numerical model for the SER in the permafrost regions of the source of Yangtze and Yellow Rivers, analyzed the spatial-temporal characteristics and sensitivity of the SER, and estimated the effect of permafrost change on the SER. The results indicate that: 1) the SER has an increasing trend, especially after 1997, which is the joint effect of precipitation, temperature, NPP and ecological conservation projects; 2) the SER shows the spatial feature of high in southeast and low in northwest,which is consistent with the variation trends of high southeast and low northwest for the precipitation, temperature and NPP, and low southeast and high northwest for the altitude; 3) the high sensitive regions of SER to the permafrost change have gradually transited from the island distribution to zonal and planar distribution since 1980, moreover, the sensitive degree has gradually reduced; relatively, the sensitivity has high value in the north and south, and low value in the south and east; 4) the thickness of permafrost active layer shows a highly negative correlation with the SER. The contribution rate of permafrost change to the SER is-4.3%, that is, once the thickness of permafrost active layer increases 1 unit, the SER would decrease 0.04 units.
基金supported by the grant from the National Basic Research Program of China (973 Program, No. 2007CB411507)Open Fund from the State Key Laboratory of Cryosphere Science (SKLCS 08-05)
文摘Mountain areas are often rich in ecological diversity and recreational opportunities. Mountain tourism is thought to be an effective and important means for maintaining and expanding rural economies and, thus, improving the living conditions of rural societies. As mountain tourism service research is a professional field with several disciplines involved, a multi-disciplinary management pIatform is needed and it facilitates participation in sustainable mountain development by diverse stakeholders. With the source regions of the Yangtze and the Yellow River as a case study, this paper presents a conceptual framework for an adaptation management of mountain tourism services according to technical, policy, social and economic dimensions. The framework is based on a vulnerability assessment of mountain ecosystems, and can serve as a reference for the development of tourism service in other mountain areas.
基金Supported by 2012 Philosophical and Social Science Research Guide Project of Universities and Colleges, Jiangsu Provincial Department of Education (2012SJD760001)
文摘Historic blocks that focus only on protection of tangible constructed environment have shown various disadvantages and gradually lost their originality, according to the investigation. Protection of historic blocks should attach more importance to maintaining original lifestyles and community customs, protecting intangible contents and cultural diversity. The authors proposed that protection of historic blocks should follow the principle of "putting protection and repair on the top priority, using reasonably" and stress the "living" protection. There are three patterns of "living" protection, specifically, joint participation of local residents, construction of education base, moderate tourism development. Vitality of local economy can be enhanced and social humanistic environment protected effectively by improving the locals' living environment, so as to show true care for the people living in the historic block, and bring historic blocks to the real life.
基金supported by a grant from the National Basic Research Program of China (2007CB411507)Open Fund of the State Key Laboratory of Cryosphere Science (SKLCS08-05)
文摘Based on a database of more than 40 years of second production process and energy flow records for Maduo,Qumalai and Yushu counties,a dynamic model of the stress within grassland ecosys-tems was established using a nonlinear regression method for this source regions of the Yangtze and Yel-low Rivers.The results show that dynamic curves of stress within grassland ecosystems in the three coun-ties were in the shape of an inverted 'U' during the period 1965-2007.It also revealed that the variation in actual amount of livestock inventories reflected the general trends of the stress within the grassland eco-systems in the source regions,although there were many other factors for the increase or reduction in grassland ecosystem stress.
基金This research was granted by the National Natural Science Foundation of China (50579021);the National Key Basic Research Program of China (No. 2002CB412405).
文摘Dissolved inorganic nutrient elements were analyzed from the samples collected in the South Passage of the Changjiang (Yangtze River) Estuary in March 2003, including NH4+, NO3-, NO2- and PO43-. The water samples were collected with a Niskin sampler hourly at the near-surface, middle and near-bottom depths at the three stations -A1, A2 and A3-during two complete tidal cycles of neap tide and spring tide. Results showed that 1) the concentrations of NH4+, NO3- and NO2- were a little higher respectively during the neap tide than those during the spring tide, while PO43- showed an opposite trend, and each was higher in the ebb tide than in the flood tide, either for the neap tidal cycle or the spring tidal cycle; 2) higher stratification of the nutrients existed obviously in this area, with the concentrations of which increased from the bottom to the surface, especially for NH4+ and NO3-; 3) the coefficient of variation (C.V.) values of all dissolved inorganic nutrients varied from 4.06% to 36.8% beyond different influences of the tidal current and Changjiang runoff; 4) with increasing suspended matter in the water column, the concentrations of PO43- became lower in the filtered water; and 5) the total transport of each tidal cycle was much more in the spring tide than in the neap tide, and the positive values indicated that the nutrients had been exported to the East China Sea. Studies on the variations and net transport of dissolved inorganic nutrients in the South Passage of the Changjiang Estuary will provide the scientific basis for the study of the mechanism of red tide in the East China Sea.
基金supported by the Strategic Priority Research Program of the Chinese Academy of Sciences,Grant No.XDA23060704
文摘The source regions of the Yangtze and Yellow Rivers are important in the field of eco-environmental change research in China because of its distinct alpine ecosystem and cryosphere environment. At present, there are three different concepts on the extent of source areas of the Yangtze and Yellow Rivers: hydrological, geographical, and eco-environmental. Over the past decades, annual average air temperature has warmed significantly;moreover, the temperature rise rate increases notably with increase of time of the data series. Annual precipitation has no obvious increase or decrease trend, and the climate has become warm and dry in the source regions. As a result, the cryosphere in the regions has shrunk significantly since 1960 s. A warm and dry climate and changing cryosphere together induced a substantial declination of alpine wetlands, marked decrease in river runoff, significant degradation of alpine grassland, and a reduction of engineering stability.The ecological environment, however, has a tendency for restoration in the regions because the climate has become gradually warm and wet since 2000. Thus, studies on eco-environmental change is transforming from a single element to multidisciplinary integration. Climate change-cryopshere change-physical and socioeconomic impacts/risk-adaptation constitute a chain of multidisciplinary integration research.
文摘Gardening style in south of the Yangtze River was reviewed, and aesthetic features of local gardens were summarized as full of humanistic connotations, modeling after the nature, graceful and free from vulgarity, refined and refreshing, implying profound significance in detailed designs, integrated virtual and real scenery. On this basis, form and meaning of leaking windows in the gardens were analyzed, and artistic means of designing leaking windows were summarized from the perspectives of leaking through scenery and borrowed scenery, virtual and real scenery, in-motion and in-position scenery.
基金funded by the Natural Sciences Foundation of China (grant No.41030318)
文摘In the transitional period between the Middle and the Late Triassic, the Indochina orogeny caused two tectonic events in South China:(1) the formation and uplift of the Qinling-Dabie orogenic belt along the northern margin of the South China Plate, due to its collision with the North China Plate; and 2) the development of a 1300-km-wide intra-continental orogen in the southeastern part of the South China Plate, which led to a northwestward movement of the foreland thrust-fold zone. These tectonic events resulted in the ending of the Yangtze Platform, and were a stable paleogeographic factor from the Eidacaran to the end of the Middle Triassic. This platform was characterized by the widespread development of shallow-water carbonates. After the end of the Yangtze Platform, the upper Yangtze foreland basin(or Sichuan foreland basin) was formed during the Late Triassic and became a accumulation site of fluvial deposits that are composed of related strata of the Xujiahe Formation. In western Sichuan Province, the Xujiahe Formation overlies the Maantang Formation shallow-water carbonate rocks of the Xiaotangzi Formation siliciclastic rocks(from shelf shales to littoral facies). The sequence-stratigraphic framework of the Upper Triassic in the upper Yangtze foreland basin indicates a particular alluvial architecture, characterized by sequences composed of(1) successions of low-energy fluvial deposits of high-accommodation phases, including coal seams, and(2) high-energy fluvial deposits of low-accommodation phases, including amalgamated river-channel sandstones. The spatial distribution of these fluvial deposits belonging to the Xujiahe Formation and its relative strata is characterized by gradual thinning-out, overlapping, and pinching-out toward both the east and south. This sedimentary record therefore expresses a particular sequence-stratigraphic succession of fluvial deposits within the filling succession of the foreland basin. The sequence-stratigraphic framework for the Upper Triassic in the Upper Yangtze region provides a record of the end of the Yangtze Platform and the formation of the upper Yangtze foreland basin.
基金National Natural Science Foundation of China, No.40371044 No.70573053
文摘In a given district, the accessibility of any point should be the synthetically evaluation of the internal and external accessibilities. Using MapX component and Delphi, the author presents an information system to calculate and analyze regional accessibility according to the shortest travel time, generating thus a mark diffusing figure. Based on land traffic network, this paper assesses the present and the future regional accessibilities of sixteen major cities in the Yangtze River Delta. The result shows that the regional accessibility of the Yangtze River Delta presents a fan with Shanghai as its core. The top two most accessible cities are Shanghai and Jiaxing, and the bottom two ones are Taizhou (Zhejiang province) and Nantong With the construction of Sutong Bridge, Hangzhouwan Bridge and Zhoushan Bridge, the regional internal accessibility of all cities will be improved. Especially for Shaoxing, Ningbo and Taizhou (Jiangsu province), the regional internal accessibility will be decreased by one hour, and other cities will be shortened by about 25 minutes averagely. As the construction of Yangkou Harbor in Nantong, the regional external accessibility of the harbor cities in Jiangsu province will be speeded up by about one hour.
基金supported by the National Science and Technology Major Project(Grant No.2017ZX05035)
文摘The Upper Ordovician Wufeng-Lower Silurian Longmaxi and the Lower Cambrian Qiongzhusi shales are the major targets for shale gas exploration and development in China.Although the two organic-rich shales share similar distribution ranges and thicknesses,they exhibit substantially different exploration and development results.This work analyzed the nanopore structures of the shale reservoirs in this region.Pore development of 51 shale samples collected from various formations and locations was compared using the petromineralogical,geochemical,structural geological and reservoir geological methods.The results indicate that the reservoir space in these shales is dominated by organic pores and the total pore volume of micropores,mesopores,macropores in different tectonic areas and formations show different trends with the increase of TOC.It is suggested that organic pores of shale can be well preserved in areas with simple structure and suitable preservation conditions,and the shale with smaller maximum ancient burial depth and later hydrocarbongeneration-end-time is also more conducive to pore preservation.Organic pore evolution models are established,and they are as follows:①Organic matter pore development stage,②Early stage of organic matter pore destruction,and③late stage of organic matter pore destruction.The areas conducive to pore development are favorable for shale gas development.Research results can effectively guide the optimization and evaluation of favorable areas of shale gas.
基金This study was supported by the National Key R&D Program of China[grant numbers 2017YFC1502402,2017YFD0300201,and 2017YFA0605004]the funds of comprehensive monitoring of the Three Gorges Project,which was financed by the Ministry of Water Resources of China.
文摘This report provides a broad overview of the climate and the major weather and climate events over the Three Gorges Region of the Yangtze River(TGR)in 2019.The year 2019,a 0.3℃ warmer year than normal,had a colder winter and warmer spring,summer,and autumn.Annual precipitation in 2019 was 13%less than normal.Below average normal rainfall amounts were received in all four seasons,with 28%and 16%less-than-normal in winter and summer,respectively.The annual mean wind speed in the TGR was higher than normal,and relative humidity was near normal for all four seasons.The intensity of acid rain in 2019 was the weakest since 1999.The major climate events and meteorological disasters in the TGR in 2019 included heat waves,drought,and rainstorms.Heat waves occurred frequently and persisted for long durations.Summer and autumn drought occurred in central and eastern regions of the TGR.The autumn rains of West China occurred earlier this year,which brought much more rainfall than normal in central and western regions of the TGR.
基金supported by the National Key R&D Program of China [grant numbers 2017YFC1502402,2017YFD0300201 and2017YFA0605004]the funds of comprehensive monitoring of the Three Gorges Project,which was financed by the Ministry of Water Resources of China.
文摘This report provides a summary of the climate, as well as the major weather and climate events,over the Three Gorges Region of the Yangtze River(TGR) in 2018. The annual mean temperature over the TGR in 2018 was 0.2℃ above normal, and precipitation was near normal. Seasonal highlights included a second warmest spring in the 58-year period of records, with abundant rainfall, which resulted in the wettest March on record. Furthermore, this was the fourth-warmest summer on record in the TGR, which contributed a higher-than-normal number of hot days in2018. Precipitation was 17% and 30% less-than-normal in winter and summer, and 40% and 6% above average in spring and autumn, respectively. The annual mean wind speed in the TGR was higher than normal, and the annual mean relative humidity was near normal. The intensity of acid rain was relatively weak, being the second-weakest year since 1999. The major meteorological disaster types in the TGR include heat waves, drought, rainstorms and flooding, freezing rain, and snow. Heat waves occurred early in the summer and persisted for long durations with strong intensities. Long-term precipitation deficits resulted in drought conditions in summer 2018 across most regions of the TGR. Frequent heavy rainfall caused urban waterlogging. The early-year and late-year cold snaps were accompanied by heavy snowfall and rain over some locations across the TGR, which had adverse impacts on transportation, agriculture, electricity, and people’s lives.
基金supported by the Major State Basic Research Development Program of China (973 Program) (Grant No. 2007CB411504 and 2007CB411507)the National Natural Science Foundation of China (Grant No. 40771047)
文摘The Yangtze River Source Region has an area of 137,704 km2.Its mean annual runoff of 12.52 billion m3,which was recorded by the Chumda Hydrological Station in 1961–2000,accounts for only 0.13 percent of the Yangtze River's total annual streamflow.The extensive rivers,lakes,wetlands,glaciers,snow fields,and permafrost of the Yangtze River Source Region,as well as the region's vast alpine grasslands,play a critical role in storing and regulating the flow of water not only in the upper Yangtze River watershed of Qinghai,Sichuan,the Tibet Autonomous Region (TAR) (Tibet) and Yunnan,but also throughout the entire lower Yangtze River basin.Climate change has been the dominant factor in recent fluctuation in the volume of the Yangtze River Source Region's glacier resources.The Chumda Hydrological Station on the lower Tongtian River has registered a mean annual glacial meltwater of 1.13 billion m3 for the period 1961–2000,makes up 9 percent of the total annual runoff.Glacial meltwater makes up a significant percentage of streamflow in the Yangtze River Source Region,the major rivers of the upper Yangtze River Source Region:the Togto,Dam Chu,Garchu,and Bi Chu (Bu Chu) rivers all originate at large glaciers along the Tanggula Range.Glaciers in the Yangtze River Source Region are typical continental-type glaciers with most glacial meltwater flow occurring June–August;the close correlation between June–August river flows and temperature illustrates the important role of glacial meltwater in feeding rivers.Glaciers in the source region have undergone a long period of rapid ablation beginning in 1993.Examination of flow and temperature data for the 1961–2000 period shows that the annual melting period for glacial ice,snow,and frozen ground in the Yangtze River Source Region now begins earlier because of increasing spring temperatures,resulting in the reduction of summer flood season peak runoffs;meanwhile,increased rates of glacier ablation have resulted in more uneven annual distribution of runoff in the source region.The annual glacial meltwater runoff in the Yangtze River Source Region is projected to increase by 28.5 percent by 2050 over its 1970 value with the projected temperature increase of 2℃ and a precipitation increase of 29 mm.As a critical source of surface water for agriculture on the eastern Qinghai-Tibet Plateau and beyond,the mass retreat of glaciers in the Yangtze River Source Region will have enormous negative impacts on farming and livestock-raising ac-tivities in upper Yangtze River watershed,as well as on the viability of present ecosystems and even socioeconomic development in the upper Yangtze River Basin.
基金supported by the National Key R&D Program of China[grant numbers 2017YFD0300201,2017YFA0605004,and 2017YFC1502402]funds of comprehensive monitoring of the Three Gorges Project,which was financed by the Ministry of Water Resources of China。
文摘In 2020,the average air temperature in the Three Gorges Region(TGR)of the Yangtze River basin was 17.2℃,which was close to normal,there were exceptionally fewer days than normal with high temperatures,and the high-temperature events mainly occurred in August.Meanwhile,the average precipitation was 1530.8 mm,which was a remarkable 29%more than usual,and the second-highest since 1961.The precipitation was obviously above-normal in summer,and the precipitation in both June and July was the second-highest of the same period in history.The average number of rainstorm days was higher than normal,and the second-highest since 1961.The average wind speed in the TGR was apparently higher than normal;the average relative humidity was slightly higher than normal;and there were no instances of acid rain,with the rain acidity showing a significant weakening trend over the previous 15 years.In the summer of 2020,the TGR experienced heavy rainstorms and flood disasters.Analysis shows that the frequent southward movement of cold air and abundant warm water vapor from the southwest were the direct causes of the abnormally high precipitation in the TGR from June to July.After the spring of 2020,the continuously high sea surface temperature in the Indian Ocean led to a continuously strong western Pacific subtropical high and its average location being situated more to the south than normal,which might have been an important cause for the abnormal climate conditions in the Yangtze River basin from June to July.
文摘In the Upper-Yangtze region, especially in Guizhou Province and its adjacent areas, the Lower Cambrian is well developed and is marked by a succession from black shales of the basin facies to carbonate rocks of the platform facies. The drowning event of the platform occurring at the turn from Sinian to Cambrian resulted in a set of black shales, i.e. the Niutitang Formation, which makes up the bottom part of the Lower Cambrian. With the shoaling of the sedimentary environment, a set of carbonate rocks, i.e. the Qingxudong Formation, was formed in the top part of the Lower Cambrian. Thus, the Lower Cambrian in the study area makes up one second-order sequence that can be further subdivided into five third-order sequences, and forms a regularly cyclic succession of transgression-regression. There is a regularly vertical stacking pattern for the third-order sequences in the second-order sequence. From bottom to top, the succession of the "CS (condensed section) +HST (high-stand system tract)" of the third-order sequences is changed into the succession of the "TST (transgressive system tract)+CS+HST". Correspondingly, the drowning-type sequence boundary is changed into the exposure-type one. Therefore, both the second-order and the third-order sequences have similar sedimentary-facies architectures. A concomitant with these temporal changes, the Lower Cambrian with a thickness of 1000 m that contains five third-order sequences is changed into a condensed succession that cannot identify third-order sequences toward the southeast with the deepening of the sedimentary environment. According to the elementary features of the third-order sequences, i.e. the regularity o sedimentary-facies successions in space and the synchronism of sedimentary-environment changes in time, the detailed division of the third-order sequences at main logged sections in different paleogeographical background becomes the basis to establish the sequence-stratigraphic framework that can demonstrate two types of facies-changing surface and two types of diachronism in the stratigraphic records. This sequence-stratigraphic framework shows a growing process of the carbonate platform from the base of the condensed succession formed by black shales of basin facies. Resulting from the rapid transgression at the turn from Sinian to Cambrian the ecological space became open, which formed the antecedent condition of paleogeographical setting for "the Cambrian Biological Explosion". Ultimately, the genetic relationship between the depositional events and the biological-diversity events is very complex and there remain lots of problems that need further research in the future.