This work carried out systematic geological field investigation, petrography observation, zircon geochronology and whole rock geochemistry on Late Paleozoic intrusions in the Xingxingxia region near the Xinjiang-Gansu...This work carried out systematic geological field investigation, petrography observation, zircon geochronology and whole rock geochemistry on Late Paleozoic intrusions in the Xingxingxia region near the Xinjiang-Gansu provincial boundary, western China, aiming to constrain the Late Paleozoic tectonic framework of the Xingxingxia region and the final closure time of South Tianshan Ocean in the East Tianshan. The Xingxingxia area is located in the east part of the Tianshan orogen, and adjacent to the north of the Tarim Basin. The Late Paleozoic magma activities in the Xingxingxia region can be mainly divided into three stages. The first stage includes intrusive magma activities under a collision setting between Late Ordovician to the Late Devonian. The second stage is intrusive magma activities under a subduction setting during(304±3)–(278±3) Ma, and the third stage involves intrusive magma activities under a collision and post-collision setting during(268±5)–(259.9±2.6) Ma. The final suture zone of South Tianshan Ocean should be between the Central Tianshan Block and South Tianshan accretionary complex. Based on previous work, both the first stage magma activities(i.e., intrusive magmatic activities between the Late Ordovician to Late Devonian) and the Hongliuhe ophiolitic complex indicate a close event between Central Tianshan Block and South Tianshan Accretionary Complex. The 304±3 Ma dioritic metamorphic gneiss of the XingX ingxia complex and the 278±3 Ma diorite are all island arc calc-alkaline rocks, the 289±3 Ma gabbro is island arc tholeiitic gabbro formed by magma from metasomatic enrichment mantle. All these results indicate that the second stage of magmatic activities is under a subduction setting. The third stage magma activities i.e. the granitic magma activities of(268±5)–(259.9±2.6) Ma occurred at a transitional setting from compressional to post-collision extensional tectonic setting. Thus, around(268±5)–(260±3) Ma, the final closure of the South Tianshan Ocean occurred and the Tianshan orogen shifted into the intracontinental evolution stage. During and after the closure process, a wide range of metamorphism and large dextral strike-slip faults developed.展开更多
The South Tianshan Orogen and adjacent regions of Central Asia are located in the southwestern part of the Central Asian Orogenic Belt. The formation of South Tianshan Orogen was a diachronous, scissors-like process, ...The South Tianshan Orogen and adjacent regions of Central Asia are located in the southwestern part of the Central Asian Orogenic Belt. The formation of South Tianshan Orogen was a diachronous, scissors-like process, which took place during the Palaeozoic, and its western segment was accepted as a site of the final collision between the Tarim Craton and the North Asian continent, which occurred in the late Palaeozoic. However, the post-collisional tectonic evolution of the South Tianshan Orogen and adjacent regions remains debatable. Based on previous studies and recent geochronogical data, we suggest that the final collision between the Tarim Craton and the North Asian continent occurred during the late Carboniferous. Therefore, the Permian was a period of intracontinental environment in the southern Tianshan and adjacent regions. We propose that an earlier, small-scale intraplate orogenic stage occurred in late Permian to Triassic time, which was the first intraplate process in the South Tianshan Orogen and adjacent regions. The later large- scale and well-known Neogene to Quaternary intraplate orogeny was induced by the collision between the India subcontinent and the Eurasian plate. The paper presents a new evolutionary model for the South Tianshan Orogen and adjacent regions, which includes seven stages: (I) late Ordovician-early Silurian opening of the South Tianshan Ocean; (11) middle Silurian-middle Devonian subduction of the South Tianshan Ocean beneath an active margin of the North Asian continent; (111) late Devonian-late Carboniferous closure of the South Tianshan Ocean and collision between the Kazakhstan-Yili and Tarirn continental blocks; (IV) early Permian post-collisional magmatism and rifting; (V) late Permian-Triassic the first intraplate orogeny; (Vt) Jurassic-Palaeogene tectonic stagnation and (VII) Neocene-Quaternary intraplate orogeny.展开更多
Seventeen new ^40Ar/^39Ar analyses reported for ten Tarim Precambrian basement samples from the Kuluketage area, are applied to reconstruct the regional thermo-tectonic history together with previously published data....Seventeen new ^40Ar/^39Ar analyses reported for ten Tarim Precambrian basement samples from the Kuluketage area, are applied to reconstruct the regional thermo-tectonic history together with previously published data. Eight samples were taken adjacent to the Xingdi and Xinger faults, major structures in the study area, whereas a further two were sampled at some distance from the faults. 4^40Ar/^39Ar data from the latter record rapid cooling following a Neoproterozoic magmatic/metamorphic event and mild Paleozoic thermal disturbance. Paleozoic ^40Ar/^39Ar ages from the study area, as well as from the Central Tianshan and eastern Southern Tianshan suggest two strong deformational periods at ~390 Ma and ~300 Ma. During the older period, argon isotopic systems were reset/disturbed by high temperature related to arc magmatism resulting from subduction of the South Tianshan paleo-oceanic crust, possibly in combination with reactivation of Precambrian faults. The younger period is characterized by widespread late Carboniferous-early Permian intracontinental deformation, which is related to the final amalgamation of the Central Asian Orogenic Belt. Previously published apatite fission track data attest to a long history of post-collisional cooling, which is attributed to continued propagation of deformation within the Central Asian Orogenic Belt.展开更多
基金the Program of China Geological Survey(grant No.1212011220649)
文摘This work carried out systematic geological field investigation, petrography observation, zircon geochronology and whole rock geochemistry on Late Paleozoic intrusions in the Xingxingxia region near the Xinjiang-Gansu provincial boundary, western China, aiming to constrain the Late Paleozoic tectonic framework of the Xingxingxia region and the final closure time of South Tianshan Ocean in the East Tianshan. The Xingxingxia area is located in the east part of the Tianshan orogen, and adjacent to the north of the Tarim Basin. The Late Paleozoic magma activities in the Xingxingxia region can be mainly divided into three stages. The first stage includes intrusive magma activities under a collision setting between Late Ordovician to the Late Devonian. The second stage is intrusive magma activities under a subduction setting during(304±3)–(278±3) Ma, and the third stage involves intrusive magma activities under a collision and post-collision setting during(268±5)–(259.9±2.6) Ma. The final suture zone of South Tianshan Ocean should be between the Central Tianshan Block and South Tianshan accretionary complex. Based on previous work, both the first stage magma activities(i.e., intrusive magmatic activities between the Late Ordovician to Late Devonian) and the Hongliuhe ophiolitic complex indicate a close event between Central Tianshan Block and South Tianshan Accretionary Complex. The 304±3 Ma dioritic metamorphic gneiss of the XingX ingxia complex and the 278±3 Ma diorite are all island arc calc-alkaline rocks, the 289±3 Ma gabbro is island arc tholeiitic gabbro formed by magma from metasomatic enrichment mantle. All these results indicate that the second stage of magmatic activities is under a subduction setting. The third stage magma activities i.e. the granitic magma activities of(268±5)–(259.9±2.6) Ma occurred at a transitional setting from compressional to post-collision extensional tectonic setting. Thus, around(268±5)–(260±3) Ma, the final closure of the South Tianshan Ocean occurred and the Tianshan orogen shifted into the intracontinental evolution stage. During and after the closure process, a wide range of metamorphism and large dextral strike-slip faults developed.
基金supported by the National Natural Science Foundation of China (Grant Nos. 40772121, 40314141 and 40172066)China National Project No. 973 (2009CB219302)IGCP Project #592 "Continental construction in Central Asia" supported by UNESCO-IUGS
文摘The South Tianshan Orogen and adjacent regions of Central Asia are located in the southwestern part of the Central Asian Orogenic Belt. The formation of South Tianshan Orogen was a diachronous, scissors-like process, which took place during the Palaeozoic, and its western segment was accepted as a site of the final collision between the Tarim Craton and the North Asian continent, which occurred in the late Palaeozoic. However, the post-collisional tectonic evolution of the South Tianshan Orogen and adjacent regions remains debatable. Based on previous studies and recent geochronogical data, we suggest that the final collision between the Tarim Craton and the North Asian continent occurred during the late Carboniferous. Therefore, the Permian was a period of intracontinental environment in the southern Tianshan and adjacent regions. We propose that an earlier, small-scale intraplate orogenic stage occurred in late Permian to Triassic time, which was the first intraplate process in the South Tianshan Orogen and adjacent regions. The later large- scale and well-known Neogene to Quaternary intraplate orogeny was induced by the collision between the India subcontinent and the Eurasian plate. The paper presents a new evolutionary model for the South Tianshan Orogen and adjacent regions, which includes seven stages: (I) late Ordovician-early Silurian opening of the South Tianshan Ocean; (11) middle Silurian-middle Devonian subduction of the South Tianshan Ocean beneath an active margin of the North Asian continent; (111) late Devonian-late Carboniferous closure of the South Tianshan Ocean and collision between the Kazakhstan-Yili and Tarirn continental blocks; (IV) early Permian post-collisional magmatism and rifting; (V) late Permian-Triassic the first intraplate orogeny; (Vt) Jurassic-Palaeogene tectonic stagnation and (VII) Neocene-Quaternary intraplate orogeny.
基金supported by MOST(2014CB440801 and 2017YFC0601206)NSFC(41230207,41302167 and 41472208)+2 种基金State Key Laboratory of Earthquake Dynamics(LED2013B03)the China Postdoctoral Council(20100480452,2012T50135)the International Postdoctoral Exchange Fellowship Program
文摘Seventeen new ^40Ar/^39Ar analyses reported for ten Tarim Precambrian basement samples from the Kuluketage area, are applied to reconstruct the regional thermo-tectonic history together with previously published data. Eight samples were taken adjacent to the Xingdi and Xinger faults, major structures in the study area, whereas a further two were sampled at some distance from the faults. 4^40Ar/^39Ar data from the latter record rapid cooling following a Neoproterozoic magmatic/metamorphic event and mild Paleozoic thermal disturbance. Paleozoic ^40Ar/^39Ar ages from the study area, as well as from the Central Tianshan and eastern Southern Tianshan suggest two strong deformational periods at ~390 Ma and ~300 Ma. During the older period, argon isotopic systems were reset/disturbed by high temperature related to arc magmatism resulting from subduction of the South Tianshan paleo-oceanic crust, possibly in combination with reactivation of Precambrian faults. The younger period is characterized by widespread late Carboniferous-early Permian intracontinental deformation, which is related to the final amalgamation of the Central Asian Orogenic Belt. Previously published apatite fission track data attest to a long history of post-collisional cooling, which is attributed to continued propagation of deformation within the Central Asian Orogenic Belt.