There is increasing evidence of the possible role of extratropical forcing in the evolution of ENSO. The Southern Hemi- sphere Annular Mode (SAM) is the dominant mode of atmospheric circulation in the Southern Hemis...There is increasing evidence of the possible role of extratropical forcing in the evolution of ENSO. The Southern Hemi- sphere Annular Mode (SAM) is the dominant mode of atmospheric circulation in the Southern Hemisphere extratropics. This study shows that the austral summer (December-January-February; DJF) SAM may also influence the amplitude of ENSO decay during austral autumn (March-April-May; MAM). The mechanisms associated with this SAM-ENSO relationship can be briefly summarized as follows: The SAM is positively (negatively) correlated with SST in the Southern Hemisphere middle (high) latitudes. This dipole-like SST anomaly pattern is referred to as the Southern Ocean Dipole (SOD). The DJF SOD, caused by the DJF SAM, could persist until MAM and then influence atmospheric circulation, including trade winds, over the Nifio3.4 area. Anomalous trade winds and SST anomalies over the Nifio3.4 area related to the DJF SAM are further developed through the Bjerkness feedback, which eventually results in a cooling (warming) over the Nifio3.4 area followed by the positive (negative) DJF SAM.展开更多
Evaluation of the mean climate and climate variability in the Southern Hemisphere (SH) in the Twentieth Century Reanalysis data version 2 (20CRv2) is conducted and the results are compared with the NCEP/NCAR versi...Evaluation of the mean climate and climate variability in the Southern Hemisphere (SH) in the Twentieth Century Reanalysis data version 2 (20CRv2) is conducted and the results are compared with the NCEP/NCAR version 2 Reanalysis data (NCEPv2) and the Hadley Center sea-level pressure data (HadSLPv2).The results show that SH polar High,SH subtropical High,upper level split jet,cross-equatorial flow,Antarctic Oscillation (AAO),and the pattem of Pacific-South-America (PSA) has been effectively captured by 20CRv2 during 1979-2010,with an apparent zonal asymmetry of AAO in the austral winter (June-July-August,JJA).The notable upward linear trend of AAO in the entire period of 1871-2010 is represented in both 20CRv2 and HadS1Pv2.The most remarkable discrepancy of the SH climate variability between 20CRv2 and HadSLPv2 occurred in 1897-1920 and was partly caused by such factors as the paucity of meteorological and oceanographic data in the SH to be assimilated,the handling of the specified sea-ice concentration in South Pole,and imperfect climate models.The consistency of these reanalysis data is increased with the use of a large amount of satellite observation and radiosonde data,particularly after 1979.展开更多
The Southern Hemisphere subtropical supergyre at intermediate depths connects all three ocean basins and plays a significant role in responding and conveying the climate-change-related variations in the glob- al ocean...The Southern Hemisphere subtropical supergyre at intermediate depths connects all three ocean basins and plays a significant role in responding and conveying the climate-change-related variations in the glob- al ocean. On the basis of the Simple Ocean Data Assimilation/SODA) ocean reanalysis, the thermohaline variability and southward shift of the mid-depth supergyre are demonstrated. The steric height of the sub- surface relative to 1 500 m (400-1 500 m) from the SODA depicts exactly the flow patterns and variability of the oceanic supergyre. During 1958-2007 the water masses in the gyre interiors become cooler/fresher, with the significant exceptions of the Agulhas Current system and Agulhas leakage. The results also exhibit a pronounced strengthening of the inter-basin connection of the supergyre, and the strongest southward shift, by about 2.5° over the whole period, occurs in the central-south Pacific, which is associated with the changes in the basin-scale wind forcing.展开更多
This study uses the Climate Forecast System Reanalysis(CFSR) to investigate the responses of the Southern Hemisphere(SH) extratropical climate to two types of El Nino–Southern Oscillation(ENSO)-the eastern Pacific(EP...This study uses the Climate Forecast System Reanalysis(CFSR) to investigate the responses of the Southern Hemisphere(SH) extratropical climate to two types of El Nino–Southern Oscillation(ENSO)-the eastern Pacific(EP) type and the central Pacific(CP) type in different seasons. The responses are denoted by the anomalies of climate variables associated with one-standard-deviation increase in the Nino3 or Nino4 index. The results show that in austral spring the differences in the ENSO-related anomaly(ERA) patterns of atmospheric circulation between the EP ENSO period(1979–1998) and CP ENSO period(1999–2010) are mainly associated with the change in the ENSO-PSA2 relationship. Such differences affect the ERA fields of surface air temperature and mixed layer temperature, and finally result in significant differences in sea-ice concentration anomalies in the Atlantic sector. In austral summer, significant correlation exists between the variations of SAM and both of the variations of Nino3 and Nino4 in 1979–1998, while the correlation between SAM and Nino4 disappears in 1999–2010. For all seasons, the strength of the climate ERAs depend on if there are close relationship between ENSO and the major climate variation modes of the SH extratropics. For the climate variables, the ERA patterns of surface air temperature are generally controlled by surface wind anomalies and mirrored by the mixed layer temperature anomalies. The mixed layer depth anomalies are primarily modulated by surface heat flux anomalies and occasionally by anomalous wind. There are strikingly strong anomalies of surface heat flux in the autumn of 1979–1998 related to the Nino3 variation, the period when there is only significant correlation between ENSO and PSA2. There are no evidence that the SH extratropical climate variability induced by Nino3 variations are stronger in the EP-ENSO period, and that variability induced by Nino4 variations are stronger in the CP-ENSO period.展开更多
Based on NCEP/NCAR (National Centers for Environmental Prediction/National Center for Atmo- spheric Research) reanalysis data from 1979 to 2010, the impacts of two types of E1 Nino on atmospheric circulation in the ...Based on NCEP/NCAR (National Centers for Environmental Prediction/National Center for Atmo- spheric Research) reanalysis data from 1979 to 2010, the impacts of two types of E1 Nino on atmospheric circulation in the Southern Hemisphere (SH) are analyzed. It is shown thaL when a warming event occurs in the equatorial eastern Pacific (EP E1 Nino), there is a negative sea level pressure (SLP) anomaly in the east- ern Pacific and a positive one in the western Pacific. Besides, there exists a negative anomaly between 40°S and 60°S and a positive anomaly to the south of 60°S. When a warming event in the central Pacific (CP E1 Nino) occurs, there appears a negative SLP anomaly in the central Pacific and a positive SLP anomaly in the eastern and western Pacific, but the SLP anomalies are not so evident in the SH extratropics. In particular, the Pacific-South America (PSA) pattern induced by the CP E1 Nino is located more northwestward, with a weaker anomaly compared with the EP E1 Nino. This difference is directly related with the different position of heating centers associated with the two types of E1 Nino events. Because the SST anomaly associated with CP E1 Nino is located more westward than that associated with EP El Nino, the related heating center tends to move westward and the response of SH atmospheric circulation to the tropical heating changes accordingly, thus exciting a different position of the PSA pattern. It is also noted that the local meridional cell plays a role in the SH high latitudes during EP E1 Nino. The anomalous ascending motion due to the enhancement of convection over the eastern Pacific leads to an enhancement of the local Hadley cell and the meridional cell in the middle and high latitudes, which in turn induces an anomalous descending motion and the related positive anomaly of geopotential height over the Amundsen-Bellingshausen Sea.展开更多
Based on the reanalysis data of monthly mean global SST and wind from the NCEP/NCAR and the observation data of rain seasons in 124 stations of Yunnan province from 1961 to 2006, we applied the analytical methods of c...Based on the reanalysis data of monthly mean global SST and wind from the NCEP/NCAR and the observation data of rain seasons in 124 stations of Yunnan province from 1961 to 2006, we applied the analytical methods of correlation analysis and composite analysis and a significance testing method to two sets of samples of average differences. The goal is to investigate into the influence of the Southern Hemispheric(SH) SST on the summer precipitation in Yunnan from January to May so as to identify the key time and marine regions. Physical mechanisms are obtained by analyzing the influence of sea level wind and the key marine regions on the precipitation during Yunnan's rain season.Results show that there is indeed significant relationship between the SST in SH and summer precipitation in Yunnan.The key areas for influencing the summer precipitation are mainly distributed in a region called "West Wind Drift" in the SH, including the Southeast Indian, southern Australia, west coast of eastern Pacific off Chile, Peru and the southwest Atlantic Magellan. Besides, the most significant marine region is the west coast of Chile and Peru(cold-current areas of the eastern Pacific). Diagnostic analysis results also showed that monsoons in the Bay of Bengal, a cross-equatorial flow in the Indian Ocean near the equator and southwest monsoon in India weaken during the warm phase of the Peruvian cold current in the eastern Pacific. Otherwise, they strengthen.展开更多
Many studies that discuss observed trends in wind speed focus primarily on regions of the Northern Hemisphere, so there is little research directed to the Southern Hemisphere. This paper pre- sents a preliminary inves...Many studies that discuss observed trends in wind speed focus primarily on regions of the Northern Hemisphere, so there is little research directed to the Southern Hemisphere. This paper pre- sents a preliminary investigation of possible statistically significant trends in wind speed over the Southern Hemisphere, with a detailing on the South American continent, between 1961 and 2008. Thus, data from the 20th Century Reanalysis V2 were examined with statistical tests of Mann- Kendall and Sen’s Bend in order to establish the significance and the magnitude of detected trends. The previous results indicate statistically significant trends of increase in average wind speedover the equatorial region of the planet, as well as in the eastern sector of the South Pacific and South Atlantic Oceans. In South America, the most significant trends of decrease in wind speed were noted in some areas of the southern sector of the continent, even as in the adjacent Atlantic Ocean to Argentina. Further studies should be performed to physically support the occurrence of these trends in wind speed. In addition, other observed and reanalysis data sets should be explored to update and corroborate these primary analyzes.展开更多
Channels of cross - equatorial flow and their characteristics Winds at every 5 deg. grid point from 30°E to 180° over the equator at 850 hPa and 200hPa from December 1984 to February 1985 have been separated...Channels of cross - equatorial flow and their characteristics Winds at every 5 deg. grid point from 30°E to 180° over the equator at 850 hPa and 200hPa from December 1984 to February 1985 have been separated into U(zonal wind) andV(meridional wind).The V component has been used to represent cross- equatorial flow. FromFig. 1 we obtained that as during the Northern summer,there are also severa1 regions in which展开更多
By employing the singular value decomposition(SVD) analysis, we have investigated in the present paper the covariations between circulation changes in the Northern(NH) and Southern Hemispheres(SH) and their associatio...By employing the singular value decomposition(SVD) analysis, we have investigated in the present paper the covariations between circulation changes in the Northern(NH) and Southern Hemispheres(SH) and their associations with ENSO by using the NCEP/NCAR reanalysis, the reconstructed monthly NOAA SST, and CMAP precipitation along with NOAA Climate Prediction Center(CPC) ENSO indices. A bi-hemispheric covariation mode(hereafter BHCM) is explored, which is well represented by the first mode of the SVD analysis of sea surface pressure anomaly(SLPA-SVD1). This SVD mode can explain 57.36% of the total covariance of SLPA. BHCM varies in time with a long-term trend and periodicities of 3—5 years. The long term trend revealed by SVD1 shows that the SLP increases in the equatorial central and eastern Pacific but decreases in the western Pacific and tropical Indian Ocean, which facilitates easterlies in the lower troposphere to be intensified and El Ni觡o events to occur with lower frequency. The spatial pattern of the BHCM looks roughly symmetric about the equator in the tropics, whereas it is characterized by zonal disturbances in the mid-latitude of NH and is highly associated with AAO in the mid-latitude of SH. On inter-annual time scales, the BHCM is highly correlated with ENSO. The atmosphere in both the NH and SH responds to sea surface temperature anomalies in the equatorial region, while the contemporaneous circulation changes in the NH and SH in turn affect the occurrence of El Ni觡o/La Ni觡a. In boreal winter, significant temperature and precipitation anomalies associated with the BHCM are found worldwide. Specifically, in the positive phase of the BHCM,temperature and precipitation are anomalously low in eastern China and some other regions of East Asia. These results are helpful for us to better understand interactions between circulations in the NH and SH and the dynamical mechanisms behind these interactions.展开更多
The Southern Hemisphere (SH) westerly winds have intensified and shifted poleward since the 1970s and this trend is projected to sustain under future anthropogenic forcing. The influences of intensified SH westerlie...The Southern Hemisphere (SH) westerly winds have intensified and shifted poleward since the 1970s and this trend is projected to sustain under future anthropogenic forcing. The influences of intensified SH westerlies on the Antarctic coastal waters are still not clear. The variability of Antarctic Continental Shelf Bottom Water (ASBW) temperature is crucial for ice shelf basal melting and hence ice shelf mass balance in Antarctica. In order to understand the impacts of SH westerlies on the variability of ASBW temperature, atmospheric forcing in 1992 when the westerlies were weak and in 1998 with strong westerlies are used to drive a high-resolution ocean-sea ice general circulation model, MITgcm-ECCO2. Our simulated results show- that under the atmospheric forcing in 1998, the ASBW becomes warmer in most regions around Antarctica except the coastal region between 60°- 150°W, than for the case under atmospheric forcing in 1992. The warming of ASBW around Antarctica is due to the intense shoaling and warming of CDW induced by enhanced Ekman pumping as well as strengthened subpolar gyres. The strengthened subpolar gyres favor the transportation of warm water to the coast of Antarctica. The cooling of ASBW along the coast of the western Antarctic Peninsula is caused by stronger coastal currents, which bring colder water downstream from the northwest flank of the Weddell Sea.展开更多
The Southern Hemisphere (SH) annular mode (SAM) is the dominant mode of atmospheric circulation in the SH extratropics. The SAM regulates climate in many regions due to its large spatial scale. Exploration of the ...The Southern Hemisphere (SH) annular mode (SAM) is the dominant mode of atmospheric circulation in the SH extratropics. The SAM regulates climate in many regions due to its large spatial scale. Exploration of the climatic impacts of the SAM is a new research field that has developed rapidly in recent years. This paper reviews studies of the climatic impact of the SAM on the SH and the Northern Hemisphere (NH), emphasizing linkages between the SAM and climate in China. Studies relating the SAM to climate change are also discussed. A general survey of these studies have been systematically investigated. On interannual shows that signals of the SAM in the SH climate scales, the SAM can influence the position of storm tracks and the vertical circulation, and modulate the dynamic and thermodynamic driving effects of the surface wind on the underlying surface, thus influencing the SH air-sea-ice coupled system. These influences generally show zonally symmetrical characteristics, but with local features. On climate change scales, the impacts of the SAM on SH climate change show a similar spatial distribution to those on interannual scales. There are also meaningful results on the relationship between the SAM and the NH climate. The SAM is known to affect the East Asian, West African, and North American summer monsoons, as well as the winter monsoon in China. Air-sea interaction plays an important role in these connections in terms of the storage of the SAM signal and its propagation from the SH to the NH. However, compared with the considerable knowledge of the impact of the SAM on the SH climate, the response of the NH climate to the SAM deserves further study, including both a deep understanding of the propagation mechanism of the SAM signal from the SH to the NH and the establishment of a seasonal prediction model based on the SAM.展开更多
Using the NCEP/NCAR reanalysis and the ENSO indices from the Climate Prediction Center over the period 1978-2014,we have investigated the contemporaneous circulation variations in the Northern and Southern Hemispheres...Using the NCEP/NCAR reanalysis and the ENSO indices from the Climate Prediction Center over the period 1978-2014,we have investigated the contemporaneous circulation variations in the Northern and Southern Hemispheres by performing the singular value decomposition analysis of sea level pressure anomalies(SLPA) after the ENSO signal is regressed out.It is found that there exists a polar-tropical seesaw mode(PTSM) that characterizes with the out of phase fluctuations of SLPA between the polar and tropical regions in the Northern and Southern Hemispheres in boreal winter.This PTSM explains 47.74%of the total covariance of SLPA and is almost independent of ENSO.It demonstrates a long-term trend and oscillation cycles of 2-3 and 4-6 yr.The long-term trend in PTSM indicates that the sea level pressure gradually decreases in the tropics and increases in the polar region with time.This PTSM looks roughly symmetric about the equator besides the seesaw pattern of SLPA between the tropics and polar region in each hemisphere.The disturbances in the geopotential height field in association with the PTSM shows baroclinic features in the tropics whereas equivalent barotropic features in the mid and high latitudes in the troposphere.The anomalous thermal forcing in the tropical region is possibly one of the factors facilitating the formation of this PTSM.Significant global precipitation and temperature anomalies related to the PTSM are observed.In the positive PTSM phase,precipitation and temperature are higher than normal in southern Europe and the Mediterranean and surrounding areas,but lower than normal in northern Europe and Siberia.Precipitation is higher than normal while temperature is lower than normal in Northeast Asia.Significant temperature and precipitation anomalies possibly occur in the regions of western China,northern India,parts of North America,parts of subtropical Africa,Maritime Continent,and Antarctic.These results are helpful for better understanding of the circulation variations and the mechanisms behind the interactions between the Northern and Southern Hemispheres and the related winter climate anomalies over globe.展开更多
Enigmatic calcareous conical fossils have been known from marine Paleocene-Eocene sequences of New Zea-land since the early 1870s.More recently,similar fossils have been recorded from both Late Cretaceous ma-rine sequ...Enigmatic calcareous conical fossils have been known from marine Paleocene-Eocene sequences of New Zea-land since the early 1870s.More recently,similar fossils have been recorded from both Late Cretaceous ma-rine sequences of Western Australia,New Caledonia and Antarctica,and possibly from the Eocene of South America.The present paper extends the record to the late Cretaceous of New Caledonia.These remains are un-like any living taxa,and have been variously interpreted as molluscs(rudistid bivalves),cirripedes(stalked bar-nacles),annelids and inorganic structures.Assignation to the Cirripedia has been refuted by Buckeridge(1983,1993),who proposed that the material would be better placed within the Cnidaria.We investigate this hypothe-sis in light of the New Caledonian material and by comparison with living gorgonians and pennatulaceans,and demonstrate that Waiparaconus is best placed within the Pennatulacea.Waiparaconus zelandicus varies in form somewhat,with 3 morphotypes defined and reinforced by geography.Comment is provided on the imperative to fit organic remains into known groups,with reflection on what may happen if taxa are left in insertae sedis.展开更多
From the topology of a synthetic aurora map, we propose a mechanism for the magnetic anomalies on the southern martian hemisphere, i.e., impacts by asteroids when the dynamo is active. The quasi concentric circles of ...From the topology of a synthetic aurora map, we propose a mechanism for the magnetic anomalies on the southern martian hemisphere, i.e., impacts by asteroids when the dynamo is active. The quasi concentric circles of aurora suggest that there are two-to-three convectional cells for each impact. The whole synthetic aurora is induced by three major impacts of asteroids. The east-west lineation features of crust magnetizations are due to the east-west trending locations of three impacts. The alternatively changed sign of crust magnetization originates from the alternatively changed flow direction on the tops of adjacent convectional cells.展开更多
The increasing trend of the Southern Annular Mode (SAM) in recent decades has influenced climate change in the Southem Hemisphere (SH).How the SAM will respond increased greenhouse gas concentrations in the future...The increasing trend of the Southern Annular Mode (SAM) in recent decades has influenced climate change in the Southem Hemisphere (SH).How the SAM will respond increased greenhouse gas concentrations in the future remains uncertain.Understanding the variability of the SAM in the past under a colder climate such as during the Last Glacial Maximum (LGM) might provide some understanding of the response of the SAM under a future warmer climate.We analyzed the changes in the SAM during the LGM in comparison to pre-industrial (PI) simulations using five coupled ocean-atmosphere models (CCSM,FGOALS,IPSL,MIROC,HadCM) from the second phase of the Paleoclimate Modelling Intercomparison Project (PMIP2).In CCSM,MIROC,IPSL,and FGOALS,the variability of the simulated SAM appears to be reduced in the LGM compared to the PI simulations,with a decrease in the standard deviation of the SAM index.Overall,four out of the five models suggest a weaker SAM amplitude in the LGM consistent with a weaker SH polar vortex and westerly winds found in some proxy records and model analyses.The weakening of the SAM in the LGM was associated with an increase in the vertical propagation of Rossby waves in southern high latitudes.展开更多
Characteristics of cyclones and explosively developing cyclones (or 'bombs') over the Southern Ocean in austral summer (December, January and February) from 2004 to 2008 are analyzed by using the Final Analysi...Characteristics of cyclones and explosively developing cyclones (or 'bombs') over the Southern Ocean in austral summer (December, January and February) from 2004 to 2008 are analyzed by using the Final Analysis (FNL) data produced by the National Centers for Environmental Prediction (NCEP) of the United States. Statistical results show that both cyclones and explosively developing cyclones frequently develop in January, and most of them occur within the latitudinal zone between 55°S and 70°S. These cyclones gradually approach the Antarctic Continent from December to February. Generally cyclones and bombs move east-southeastward with some exceptions of northeastward movement. The lifetime of cyclones is around 2-6 d, and the horizontal scale is about 1000 km. Explosive cyclones have the lifetime of about 1 week with the horizontal scale reaching up to 3000 km. Compared with cyclones developed in the Northern Hemisphere, cyclones over the southern ocean have much higher occurrence frequency, lower central pressure and larger horizontal scale, which may be caused by the unique geographical features of the Southern Hemisphere.展开更多
Based on analyzing the surface air temperature series in the Southern and Northern Hemisphere and the tropical cyclone (TC) over the western North Pacific Ocean, the relationships between climatic warming and the freq...Based on analyzing the surface air temperature series in the Southern and Northern Hemisphere and the tropical cyclone (TC) over the western North Pacific Ocean, the relationships between climatic warming and the frequency and intensity of tropical cyclone are investigated. The results showed that with the climatic warming in both hemispheres, the frequency of the tropical cyclone over the western North Pacific Ocean reduces and its intensity weakens simultaneously. A possible explanation might be that the cold air invasion from the Southern Hemisphere weakens due to global warming.展开更多
For this study of long-term spatial patterns and trends of active fires in southern hemispheric Africa and on Madagascar from 2001 to 2020,active fire data from the MODIS FIRMS global fire data products were analyzed....For this study of long-term spatial patterns and trends of active fires in southern hemispheric Africa and on Madagascar from 2001 to 2020,active fire data from the MODIS FIRMS global fire data products were analyzed.The annual center of fire concentration tended to migrate toward the preserved rainforests and nature conservation areas in the Congo Basin and the mountain forests on the northeastern coast of Madagascar.Fire frequency varied seasonally at both study areas.We used geo statistical analysis techniques,such as measures of dispersion and emerging hot spot analysis,to reveal long-term trends in spatial patterns of fire events.In southern hemispheric Africa,the observed active fires tended to drift northward toward the Zambia-DRC border in the Congo basin.This northward migration progressed toward humid rainforests,which were better suited to sustaining repeated fire events.On Madagascar,the observed active fires tended to migrate toward the east coast in protected mountain forests.The spatial patterns of long-term trends showed a concentration of fires in the tropical regions of southern hemispheric Africa.Moreover,smaller clusters of new hot spots were located over eastern South Africa,overlapping with undifferentiated woodlands.On Madagascar,both hot and cold spots were identified and were separated by the highland region in the center of the island.Most of the eastern island was characterized by cold spots that received less precipitation than did the rest of the island.The presence of increasing hots spots in the densely vegetated areas highlights the urgent need for fire prevention and management in this region.展开更多
A previous multiple-AGCM study suggested that Indian Ocean Warming (IOW) tends to warm and weaken the southern polar vortex.Such an impact is robust because of a qualitative consistency among the five AGCMs used.How...A previous multiple-AGCM study suggested that Indian Ocean Warming (IOW) tends to warm and weaken the southern polar vortex.Such an impact is robust because of a qualitative consistency among the five AGCMs used.However,a significant difference exists in the modeled strengths,particularly in the stratosphere,with those in three of the AGCMs (CCM3,CAM3,and GFS) being four to five times as strong as those in the two other models (GFDL AM2,ECHAM5).As to which case reflects reality is an important issue not only for quantifying the role of tropical ocean warming in the recent modest recovery of the ozone hole over the Antarctic,but also for projecting its future trend.This issue is addressed in the present study through comparing the models' climatological mean states and intrinsic variability,particularly those influencing tropospheric signals to propagate upward and reach the stratosphere.The results suggest that differences in intrinsic variability of model atmospheres provide implications for the difference.Based on a comparison with observations,it is speculated that the impact in the real world may be closer to the modest one simulated by GFDL AM2 and ECHAM5,rather than the strong one simulated by the three other models (CCM3,CAM3 and GFS).In particular,IOW during the past 50 years may have dynamically induced a 1.0℃ warming in the polar lower stratosphere (~100 hPa),which canceled a fraction of radiative cooling due to ozone depletion.展开更多
Through observational analyses, an inter-hemispheric teleconnection is identified between the subtropical region of the South China Sea to the western Pacific near the Philippines (WP) and the region to the east of ...Through observational analyses, an inter-hemispheric teleconnection is identified between the subtropical region of the South China Sea to the western Pacific near the Philippines (WP) and the region to the east of Australia (AE). The teleconnection is significantly correlated with sea surface temperature anomalies (SSTAs) in key sea areas (including the Indian Ocean, the South China Sea, and the area to the east of Australia). Based on the IAP T42L9 model, numerical experiments axe performed to explore a possible mechanism for the formation of the teleconnection. The results show that the positive SST anomalies in the key sea areas may jointly contribute to the occurrence and maintenance of the positive geopotential height anomalies over both the WP and AE and be a critical factor in the teleconnection formation. The large-scale SST anomaly in the Indian Ocean, involving the tropics concurrent atmospheric responses over both the WP and the east of Australia seems to reinforce and maintain the and subtropics of both hemispheres, may lead to AE, while the effect of the local SST anomaly to positive height anomaly over the AE.展开更多
基金supported by the China Special Fund for Meteorological Research in the Public Interest (Grant No.GYHY201506032)an NSFC project (Grant No.41405086)and a National Key R&D Program of China (Grant No.2016YFA0601801)
文摘There is increasing evidence of the possible role of extratropical forcing in the evolution of ENSO. The Southern Hemi- sphere Annular Mode (SAM) is the dominant mode of atmospheric circulation in the Southern Hemisphere extratropics. This study shows that the austral summer (December-January-February; DJF) SAM may also influence the amplitude of ENSO decay during austral autumn (March-April-May; MAM). The mechanisms associated with this SAM-ENSO relationship can be briefly summarized as follows: The SAM is positively (negatively) correlated with SST in the Southern Hemisphere middle (high) latitudes. This dipole-like SST anomaly pattern is referred to as the Southern Ocean Dipole (SOD). The DJF SOD, caused by the DJF SAM, could persist until MAM and then influence atmospheric circulation, including trade winds, over the Nifio3.4 area. Anomalous trade winds and SST anomalies over the Nifio3.4 area related to the DJF SAM are further developed through the Bjerkness feedback, which eventually results in a cooling (warming) over the Nifio3.4 area followed by the positive (negative) DJF SAM.
基金supported by the Strategic Technological Program of the Chinese Academy of Sciences(Grant No.XDA05090426)the National Basic Research Program of China(Grant No.2010CB950304)the Key Program of the Chinese Academy of Sciences(Grant KZCX2-YW-QN202)
文摘Evaluation of the mean climate and climate variability in the Southern Hemisphere (SH) in the Twentieth Century Reanalysis data version 2 (20CRv2) is conducted and the results are compared with the NCEP/NCAR version 2 Reanalysis data (NCEPv2) and the Hadley Center sea-level pressure data (HadSLPv2).The results show that SH polar High,SH subtropical High,upper level split jet,cross-equatorial flow,Antarctic Oscillation (AAO),and the pattem of Pacific-South-America (PSA) has been effectively captured by 20CRv2 during 1979-2010,with an apparent zonal asymmetry of AAO in the austral winter (June-July-August,JJA).The notable upward linear trend of AAO in the entire period of 1871-2010 is represented in both 20CRv2 and HadS1Pv2.The most remarkable discrepancy of the SH climate variability between 20CRv2 and HadSLPv2 occurred in 1897-1920 and was partly caused by such factors as the paucity of meteorological and oceanographic data in the SH to be assimilated,the handling of the specified sea-ice concentration in South Pole,and imperfect climate models.The consistency of these reanalysis data is increased with the use of a large amount of satellite observation and radiosonde data,particularly after 1979.
基金The National Natural Science Foundation of China under contract No.41006013the National High Technology Research and Development Program of China (863 Program) under contract No.2008AA121701+1 种基金the Public Science and Technology Research Funds Projects of Ocean Institute of Oceanology,Chinese Academy of Sciences under contract No.201205010the National Basic Research Program of China (973Program) under contract No.2010CB950301
文摘The Southern Hemisphere subtropical supergyre at intermediate depths connects all three ocean basins and plays a significant role in responding and conveying the climate-change-related variations in the glob- al ocean. On the basis of the Simple Ocean Data Assimilation/SODA) ocean reanalysis, the thermohaline variability and southward shift of the mid-depth supergyre are demonstrated. The steric height of the sub- surface relative to 1 500 m (400-1 500 m) from the SODA depicts exactly the flow patterns and variability of the oceanic supergyre. During 1958-2007 the water masses in the gyre interiors become cooler/fresher, with the significant exceptions of the Agulhas Current system and Agulhas leakage. The results also exhibit a pronounced strengthening of the inter-basin connection of the supergyre, and the strongest southward shift, by about 2.5° over the whole period, occurs in the central-south Pacific, which is associated with the changes in the basin-scale wind forcing.
基金The General Program of the National Natural Science Foundation of China under contract Nos 41876221 and 41861134040
文摘This study uses the Climate Forecast System Reanalysis(CFSR) to investigate the responses of the Southern Hemisphere(SH) extratropical climate to two types of El Nino–Southern Oscillation(ENSO)-the eastern Pacific(EP) type and the central Pacific(CP) type in different seasons. The responses are denoted by the anomalies of climate variables associated with one-standard-deviation increase in the Nino3 or Nino4 index. The results show that in austral spring the differences in the ENSO-related anomaly(ERA) patterns of atmospheric circulation between the EP ENSO period(1979–1998) and CP ENSO period(1999–2010) are mainly associated with the change in the ENSO-PSA2 relationship. Such differences affect the ERA fields of surface air temperature and mixed layer temperature, and finally result in significant differences in sea-ice concentration anomalies in the Atlantic sector. In austral summer, significant correlation exists between the variations of SAM and both of the variations of Nino3 and Nino4 in 1979–1998, while the correlation between SAM and Nino4 disappears in 1999–2010. For all seasons, the strength of the climate ERAs depend on if there are close relationship between ENSO and the major climate variation modes of the SH extratropics. For the climate variables, the ERA patterns of surface air temperature are generally controlled by surface wind anomalies and mirrored by the mixed layer temperature anomalies. The mixed layer depth anomalies are primarily modulated by surface heat flux anomalies and occasionally by anomalous wind. There are strikingly strong anomalies of surface heat flux in the autumn of 1979–1998 related to the Nino3 variation, the period when there is only significant correlation between ENSO and PSA2. There are no evidence that the SH extratropical climate variability induced by Nino3 variations are stronger in the EP-ENSO period, and that variability induced by Nino4 variations are stronger in the CP-ENSO period.
基金jointly supported by the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDA05110201)the Development and Validation of High Resolution Climate System Model of the National Basic Research Program of China(Grant No.2010CB951901)
文摘Based on NCEP/NCAR (National Centers for Environmental Prediction/National Center for Atmo- spheric Research) reanalysis data from 1979 to 2010, the impacts of two types of E1 Nino on atmospheric circulation in the Southern Hemisphere (SH) are analyzed. It is shown thaL when a warming event occurs in the equatorial eastern Pacific (EP E1 Nino), there is a negative sea level pressure (SLP) anomaly in the east- ern Pacific and a positive one in the western Pacific. Besides, there exists a negative anomaly between 40°S and 60°S and a positive anomaly to the south of 60°S. When a warming event in the central Pacific (CP E1 Nino) occurs, there appears a negative SLP anomaly in the central Pacific and a positive SLP anomaly in the eastern and western Pacific, but the SLP anomalies are not so evident in the SH extratropics. In particular, the Pacific-South America (PSA) pattern induced by the CP E1 Nino is located more northwestward, with a weaker anomaly compared with the EP E1 Nino. This difference is directly related with the different position of heating centers associated with the two types of E1 Nino events. Because the SST anomaly associated with CP E1 Nino is located more westward than that associated with EP El Nino, the related heating center tends to move westward and the response of SH atmospheric circulation to the tropical heating changes accordingly, thus exciting a different position of the PSA pattern. It is also noted that the local meridional cell plays a role in the SH high latitudes during EP E1 Nino. The anomalous ascending motion due to the enhancement of convection over the eastern Pacific leads to an enhancement of the local Hadley cell and the meridional cell in the middle and high latitudes, which in turn induces an anomalous descending motion and the related positive anomaly of geopotential height over the Amundsen-Bellingshausen Sea.
基金National Natural Science Foundation of China(41075072,41065004)National Natural Science Foundation of China-Yunnan Province Joint Foundation(U0833602)+2 种基金Specialized Project for Forecasters in Yunnan Province(YB201202)Project for Fourth Program of Undergraduates in Yunnan Province(ynuy201154)Integration and Demonstration of Techniques for Mitigating and Controlling Eruptive Disasters in Southwest China,a project of National Science and Technology Support for the 12th Five-Year Economic Development(2012BAD20B06)
文摘Based on the reanalysis data of monthly mean global SST and wind from the NCEP/NCAR and the observation data of rain seasons in 124 stations of Yunnan province from 1961 to 2006, we applied the analytical methods of correlation analysis and composite analysis and a significance testing method to two sets of samples of average differences. The goal is to investigate into the influence of the Southern Hemispheric(SH) SST on the summer precipitation in Yunnan from January to May so as to identify the key time and marine regions. Physical mechanisms are obtained by analyzing the influence of sea level wind and the key marine regions on the precipitation during Yunnan's rain season.Results show that there is indeed significant relationship between the SST in SH and summer precipitation in Yunnan.The key areas for influencing the summer precipitation are mainly distributed in a region called "West Wind Drift" in the SH, including the Southeast Indian, southern Australia, west coast of eastern Pacific off Chile, Peru and the southwest Atlantic Magellan. Besides, the most significant marine region is the west coast of Chile and Peru(cold-current areas of the eastern Pacific). Diagnostic analysis results also showed that monsoons in the Bay of Bengal, a cross-equatorial flow in the Indian Ocean near the equator and southwest monsoon in India weaken during the warm phase of the Peruvian cold current in the eastern Pacific. Otherwise, they strengthen.
文摘Many studies that discuss observed trends in wind speed focus primarily on regions of the Northern Hemisphere, so there is little research directed to the Southern Hemisphere. This paper pre- sents a preliminary investigation of possible statistically significant trends in wind speed over the Southern Hemisphere, with a detailing on the South American continent, between 1961 and 2008. Thus, data from the 20th Century Reanalysis V2 were examined with statistical tests of Mann- Kendall and Sen’s Bend in order to establish the significance and the magnitude of detected trends. The previous results indicate statistically significant trends of increase in average wind speedover the equatorial region of the planet, as well as in the eastern sector of the South Pacific and South Atlantic Oceans. In South America, the most significant trends of decrease in wind speed were noted in some areas of the southern sector of the continent, even as in the adjacent Atlantic Ocean to Argentina. Further studies should be performed to physically support the occurrence of these trends in wind speed. In addition, other observed and reanalysis data sets should be explored to update and corroborate these primary analyzes.
文摘Channels of cross - equatorial flow and their characteristics Winds at every 5 deg. grid point from 30°E to 180° over the equator at 850 hPa and 200hPa from December 1984 to February 1985 have been separated into U(zonal wind) andV(meridional wind).The V component has been used to represent cross- equatorial flow. FromFig. 1 we obtained that as during the Northern summer,there are also severa1 regions in which
基金National Natural Science Foundation of China(4133042541175062)
文摘By employing the singular value decomposition(SVD) analysis, we have investigated in the present paper the covariations between circulation changes in the Northern(NH) and Southern Hemispheres(SH) and their associations with ENSO by using the NCEP/NCAR reanalysis, the reconstructed monthly NOAA SST, and CMAP precipitation along with NOAA Climate Prediction Center(CPC) ENSO indices. A bi-hemispheric covariation mode(hereafter BHCM) is explored, which is well represented by the first mode of the SVD analysis of sea surface pressure anomaly(SLPA-SVD1). This SVD mode can explain 57.36% of the total covariance of SLPA. BHCM varies in time with a long-term trend and periodicities of 3—5 years. The long term trend revealed by SVD1 shows that the SLP increases in the equatorial central and eastern Pacific but decreases in the western Pacific and tropical Indian Ocean, which facilitates easterlies in the lower troposphere to be intensified and El Ni觡o events to occur with lower frequency. The spatial pattern of the BHCM looks roughly symmetric about the equator in the tropics, whereas it is characterized by zonal disturbances in the mid-latitude of NH and is highly associated with AAO in the mid-latitude of SH. On inter-annual time scales, the BHCM is highly correlated with ENSO. The atmosphere in both the NH and SH responds to sea surface temperature anomalies in the equatorial region, while the contemporaneous circulation changes in the NH and SH in turn affect the occurrence of El Ni觡o/La Ni觡a. In boreal winter, significant temperature and precipitation anomalies associated with the BHCM are found worldwide. Specifically, in the positive phase of the BHCM,temperature and precipitation are anomalously low in eastern China and some other regions of East Asia. These results are helpful for us to better understand interactions between circulations in the NH and SH and the dynamical mechanisms behind these interactions.
基金supported by the National Key R&D Program of China (Grant no.2016YFA0601804)supported by the Fundamental Research Funds for the Central Universities (Grant nos.2017B04814,2017B20714)
文摘The Southern Hemisphere (SH) westerly winds have intensified and shifted poleward since the 1970s and this trend is projected to sustain under future anthropogenic forcing. The influences of intensified SH westerlies on the Antarctic coastal waters are still not clear. The variability of Antarctic Continental Shelf Bottom Water (ASBW) temperature is crucial for ice shelf basal melting and hence ice shelf mass balance in Antarctica. In order to understand the impacts of SH westerlies on the variability of ASBW temperature, atmospheric forcing in 1992 when the westerlies were weak and in 1998 with strong westerlies are used to drive a high-resolution ocean-sea ice general circulation model, MITgcm-ECCO2. Our simulated results show- that under the atmospheric forcing in 1998, the ASBW becomes warmer in most regions around Antarctica except the coastal region between 60°- 150°W, than for the case under atmospheric forcing in 1992. The warming of ASBW around Antarctica is due to the intense shoaling and warming of CDW induced by enhanced Ekman pumping as well as strengthened subpolar gyres. The strengthened subpolar gyres favor the transportation of warm water to the coast of Antarctica. The cooling of ASBW along the coast of the western Antarctic Peninsula is caused by stronger coastal currents, which bring colder water downstream from the northwest flank of the Weddell Sea.
基金Supported by the National Basic Research and Development(973)Program of China(2013CB430200)National Natural Science Foundation of China(41030961)China Meteorological Administration Special Public Welfare Research Fund(GYHY201306031)
文摘The Southern Hemisphere (SH) annular mode (SAM) is the dominant mode of atmospheric circulation in the SH extratropics. The SAM regulates climate in many regions due to its large spatial scale. Exploration of the climatic impacts of the SAM is a new research field that has developed rapidly in recent years. This paper reviews studies of the climatic impact of the SAM on the SH and the Northern Hemisphere (NH), emphasizing linkages between the SAM and climate in China. Studies relating the SAM to climate change are also discussed. A general survey of these studies have been systematically investigated. On interannual shows that signals of the SAM in the SH climate scales, the SAM can influence the position of storm tracks and the vertical circulation, and modulate the dynamic and thermodynamic driving effects of the surface wind on the underlying surface, thus influencing the SH air-sea-ice coupled system. These influences generally show zonally symmetrical characteristics, but with local features. On climate change scales, the impacts of the SAM on SH climate change show a similar spatial distribution to those on interannual scales. There are also meaningful results on the relationship between the SAM and the NH climate. The SAM is known to affect the East Asian, West African, and North American summer monsoons, as well as the winter monsoon in China. Air-sea interaction plays an important role in these connections in terms of the storage of the SAM signal and its propagation from the SH to the NH. However, compared with the considerable knowledge of the impact of the SAM on the SH climate, the response of the NH climate to the SAM deserves further study, including both a deep understanding of the propagation mechanism of the SAM signal from the SH to the NH and the establishment of a seasonal prediction model based on the SAM.
基金Supported by the National Natural Science Foundation of China(41175062 and 41330425)Science Innovation Program of the State Key Laboratory of Severe Weather,Chinese Academy of Meteorological Sciences(2015LASW-A03)
文摘Using the NCEP/NCAR reanalysis and the ENSO indices from the Climate Prediction Center over the period 1978-2014,we have investigated the contemporaneous circulation variations in the Northern and Southern Hemispheres by performing the singular value decomposition analysis of sea level pressure anomalies(SLPA) after the ENSO signal is regressed out.It is found that there exists a polar-tropical seesaw mode(PTSM) that characterizes with the out of phase fluctuations of SLPA between the polar and tropical regions in the Northern and Southern Hemispheres in boreal winter.This PTSM explains 47.74%of the total covariance of SLPA and is almost independent of ENSO.It demonstrates a long-term trend and oscillation cycles of 2-3 and 4-6 yr.The long-term trend in PTSM indicates that the sea level pressure gradually decreases in the tropics and increases in the polar region with time.This PTSM looks roughly symmetric about the equator besides the seesaw pattern of SLPA between the tropics and polar region in each hemisphere.The disturbances in the geopotential height field in association with the PTSM shows baroclinic features in the tropics whereas equivalent barotropic features in the mid and high latitudes in the troposphere.The anomalous thermal forcing in the tropical region is possibly one of the factors facilitating the formation of this PTSM.Significant global precipitation and temperature anomalies related to the PTSM are observed.In the positive PTSM phase,precipitation and temperature are higher than normal in southern Europe and the Mediterranean and surrounding areas,but lower than normal in northern Europe and Siberia.Precipitation is higher than normal while temperature is lower than normal in Northeast Asia.Significant temperature and precipitation anomalies possibly occur in the regions of western China,northern India,parts of North America,parts of subtropical Africa,Maritime Continent,and Antarctic.These results are helpful for better understanding of the circulation variations and the mechanisms behind the interactions between the Northern and Southern Hemispheres and the related winter climate anomalies over globe.
文摘Enigmatic calcareous conical fossils have been known from marine Paleocene-Eocene sequences of New Zea-land since the early 1870s.More recently,similar fossils have been recorded from both Late Cretaceous ma-rine sequences of Western Australia,New Caledonia and Antarctica,and possibly from the Eocene of South America.The present paper extends the record to the late Cretaceous of New Caledonia.These remains are un-like any living taxa,and have been variously interpreted as molluscs(rudistid bivalves),cirripedes(stalked bar-nacles),annelids and inorganic structures.Assignation to the Cirripedia has been refuted by Buckeridge(1983,1993),who proposed that the material would be better placed within the Cnidaria.We investigate this hypothe-sis in light of the New Caledonian material and by comparison with living gorgonians and pennatulaceans,and demonstrate that Waiparaconus is best placed within the Pennatulacea.Waiparaconus zelandicus varies in form somewhat,with 3 morphotypes defined and reinforced by geography.Comment is provided on the imperative to fit organic remains into known groups,with reflection on what may happen if taxa are left in insertae sedis.
基金Supported by the National Natural Science Foundation of China under Grant Nos 41374179 and 41421063
文摘From the topology of a synthetic aurora map, we propose a mechanism for the magnetic anomalies on the southern martian hemisphere, i.e., impacts by asteroids when the dynamo is active. The quasi concentric circles of aurora suggest that there are two-to-three convectional cells for each impact. The whole synthetic aurora is induced by three major impacts of asteroids. The east-west lineation features of crust magnetizations are due to the east-west trending locations of three impacts. The alternatively changed sign of crust magnetization originates from the alternatively changed flow direction on the tops of adjacent convectional cells.
基金supported by the "Investigation of Climate Change Mechanism by Observation and Simulation of Polar Climate Change for the Past and Present" project (PE14010) of the KOPRIthe Special Project of Basic Science and Technology (2011FY120300)+1 种基金the Korea Meteorological Administration Research and Development Program under Grant CATER 2012-3061 (PN13010)supported by the Jiangsu Collaborative Innovation Center for Climate Change
文摘The increasing trend of the Southern Annular Mode (SAM) in recent decades has influenced climate change in the Southem Hemisphere (SH).How the SAM will respond increased greenhouse gas concentrations in the future remains uncertain.Understanding the variability of the SAM in the past under a colder climate such as during the Last Glacial Maximum (LGM) might provide some understanding of the response of the SAM under a future warmer climate.We analyzed the changes in the SAM during the LGM in comparison to pre-industrial (PI) simulations using five coupled ocean-atmosphere models (CCSM,FGOALS,IPSL,MIROC,HadCM) from the second phase of the Paleoclimate Modelling Intercomparison Project (PMIP2).In CCSM,MIROC,IPSL,and FGOALS,the variability of the simulated SAM appears to be reduced in the LGM compared to the PI simulations,with a decrease in the standard deviation of the SAM index.Overall,four out of the five models suggest a weaker SAM amplitude in the LGM consistent with a weaker SH polar vortex and westerly winds found in some proxy records and model analyses.The weakening of the SAM in the LGM was associated with an increase in the vertical propagation of Rossby waves in southern high latitudes.
基金supported by the Chinese Meteorological Administration (No. GYHY(QX)200706031)the National Natural Science Foundation of China (No. 406750060)+1 种基金the Chinese Ministry of Science and Technology (863 Project) (No. 2006AA09Z151)supported by the open project of the Laboratory of Physical Oceanography of Ocean University of China
文摘Characteristics of cyclones and explosively developing cyclones (or 'bombs') over the Southern Ocean in austral summer (December, January and February) from 2004 to 2008 are analyzed by using the Final Analysis (FNL) data produced by the National Centers for Environmental Prediction (NCEP) of the United States. Statistical results show that both cyclones and explosively developing cyclones frequently develop in January, and most of them occur within the latitudinal zone between 55°S and 70°S. These cyclones gradually approach the Antarctic Continent from December to February. Generally cyclones and bombs move east-southeastward with some exceptions of northeastward movement. The lifetime of cyclones is around 2-6 d, and the horizontal scale is about 1000 km. Explosive cyclones have the lifetime of about 1 week with the horizontal scale reaching up to 3000 km. Compared with cyclones developed in the Northern Hemisphere, cyclones over the southern ocean have much higher occurrence frequency, lower central pressure and larger horizontal scale, which may be caused by the unique geographical features of the Southern Hemisphere.
文摘Based on analyzing the surface air temperature series in the Southern and Northern Hemisphere and the tropical cyclone (TC) over the western North Pacific Ocean, the relationships between climatic warming and the frequency and intensity of tropical cyclone are investigated. The results showed that with the climatic warming in both hemispheres, the frequency of the tropical cyclone over the western North Pacific Ocean reduces and its intensity weakens simultaneously. A possible explanation might be that the cold air invasion from the Southern Hemisphere weakens due to global warming.
文摘For this study of long-term spatial patterns and trends of active fires in southern hemispheric Africa and on Madagascar from 2001 to 2020,active fire data from the MODIS FIRMS global fire data products were analyzed.The annual center of fire concentration tended to migrate toward the preserved rainforests and nature conservation areas in the Congo Basin and the mountain forests on the northeastern coast of Madagascar.Fire frequency varied seasonally at both study areas.We used geo statistical analysis techniques,such as measures of dispersion and emerging hot spot analysis,to reveal long-term trends in spatial patterns of fire events.In southern hemispheric Africa,the observed active fires tended to drift northward toward the Zambia-DRC border in the Congo basin.This northward migration progressed toward humid rainforests,which were better suited to sustaining repeated fire events.On Madagascar,the observed active fires tended to migrate toward the east coast in protected mountain forests.The spatial patterns of long-term trends showed a concentration of fires in the tropical regions of southern hemispheric Africa.Moreover,smaller clusters of new hot spots were located over eastern South Africa,overlapping with undifferentiated woodlands.On Madagascar,both hot and cold spots were identified and were separated by the highland region in the center of the island.Most of the eastern island was characterized by cold spots that received less precipitation than did the rest of the island.The presence of increasing hots spots in the densely vegetated areas highlights the urgent need for fire prevention and management in this region.
基金supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDA05090406)the National Key Basic Research Program of China (Grant Nos. 2012CB417403 and 2010CB428602)
文摘A previous multiple-AGCM study suggested that Indian Ocean Warming (IOW) tends to warm and weaken the southern polar vortex.Such an impact is robust because of a qualitative consistency among the five AGCMs used.However,a significant difference exists in the modeled strengths,particularly in the stratosphere,with those in three of the AGCMs (CCM3,CAM3,and GFS) being four to five times as strong as those in the two other models (GFDL AM2,ECHAM5).As to which case reflects reality is an important issue not only for quantifying the role of tropical ocean warming in the recent modest recovery of the ozone hole over the Antarctic,but also for projecting its future trend.This issue is addressed in the present study through comparing the models' climatological mean states and intrinsic variability,particularly those influencing tropospheric signals to propagate upward and reach the stratosphere.The results suggest that differences in intrinsic variability of model atmospheres provide implications for the difference.Based on a comparison with observations,it is speculated that the impact in the real world may be closer to the modest one simulated by GFDL AM2 and ECHAM5,rather than the strong one simulated by the three other models (CCM3,CAM3 and GFS).In particular,IOW during the past 50 years may have dynamically induced a 1.0℃ warming in the polar lower stratosphere (~100 hPa),which canceled a fraction of radiative cooling due to ozone depletion.
基金supported by National Basic Research Program of China(Grant No.2009CB421401)National Key Technology R&D Program(Grant No.2009BAC51B00)National Natural Science Foundation of China(Grant No.40975022)
文摘Through observational analyses, an inter-hemispheric teleconnection is identified between the subtropical region of the South China Sea to the western Pacific near the Philippines (WP) and the region to the east of Australia (AE). The teleconnection is significantly correlated with sea surface temperature anomalies (SSTAs) in key sea areas (including the Indian Ocean, the South China Sea, and the area to the east of Australia). Based on the IAP T42L9 model, numerical experiments axe performed to explore a possible mechanism for the formation of the teleconnection. The results show that the positive SST anomalies in the key sea areas may jointly contribute to the occurrence and maintenance of the positive geopotential height anomalies over both the WP and AE and be a critical factor in the teleconnection formation. The large-scale SST anomaly in the Indian Ocean, involving the tropics concurrent atmospheric responses over both the WP and the east of Australia seems to reinforce and maintain the and subtropics of both hemispheres, may lead to AE, while the effect of the local SST anomaly to positive height anomaly over the AE.