To fully exploit the technical advantages of the large-depth and high-precision artificial source electromagnetic method in the complex structure area of southern Sichuan and compensate for the shortcomings of the con...To fully exploit the technical advantages of the large-depth and high-precision artificial source electromagnetic method in the complex structure area of southern Sichuan and compensate for the shortcomings of the conventional electromagnetic method in exploration depth,precision,and accuracy,the large-depth and high-precision wide field electromagnetic method is applied to the complex structure test area of the Luochang syncline and Yuhe nose anticline in the southern Sichuan.The advantages of the wide field electromagnetic method in detecting deep,low-resistivity thin layers are demonstrated.First,on the basis of the analysis of physical property data,a geological–geoelectric model is established in the test area,and the wide field electromagnetic method is numerically simulated to analyze and evaluate the response characteristics of deep thin shale gas layers on wide field electromagnetic curves.Second,a wide field electromagnetic test is conducted in the complex structure area of southern Sichuan.After data processing and inversion imaging,apparent resistivity logging data are used for calibration to develop an apparent resistivity interpretation model suitable for the test area.On the basis of the results,the characteristics of the electrical structure change in the shallow longitudinal formation of 6 km are implemented,and the transverse electrical distribution characteristics of the deep shale gas layer are delineated.In the prediction area near the well,the subsequent data verification shows that the apparent resistivity obtained using the inversion of the wide field electromagnetic method is consistent with the trend of apparent resistivity revealed by logging,which proves that this method can effectively identify the weak response characteristics of deep shale gas formations in complex structural areas.This experiment,it is shown shows that the wide field electromagnetic method with a large depth and high precision can effectively characterize the electrical characteristics of deep,low-resistivity thin layers in complex structural areas,and a new set of low-cost evaluation technologies for shale gas target layers based on the wide field electromagnetic method is explored.展开更多
The apparent ages of samples are obtained from fission track dating of apatite samples collected from the fault zones in Mabian area, southern Sichuan Province. In addition, thermal history is simulated from the obtai...The apparent ages of samples are obtained from fission track dating of apatite samples collected from the fault zones in Mabian area, southern Sichuan Province. In addition, thermal history is simulated from the obtained data by applying AFT Solve Program, to acquire the thermal evolution history of the samples. The result shows that tectonically the Mabian area was relatively stable between 25 and 3 Ma, compared to the inner parts and other marginal areas of the Tibetan Plateau. The studied area had little response to the rapid uplift events that occurred for several times in the Tibetan Plateau during 25-3 Ma. The latest thermal event related to the activity of the Lidian fault zone (about 8 Ma ) is later than that of the Ebian fault zone (18-15 Ma ) to the west, indicating to some extent that the evolution of fault activity in the Mabian area has migrated from west to east. The latest extensive tectonic uplift occurred since about 3 Ma. As compared with the Xianshuihe fault zone, the Mabian area is closer to the east- ern margin of the plateau, while the time of fast cooling event in this area is later than that in the southeast segment of the Xianshuihe fault zone (3.6-3.46 Ma ). It appears to support the assumption of episodic uplift and stepwise outward extension of the eastern boundary of the Tibetan Plateau in late Cenozoic.展开更多
文摘To fully exploit the technical advantages of the large-depth and high-precision artificial source electromagnetic method in the complex structure area of southern Sichuan and compensate for the shortcomings of the conventional electromagnetic method in exploration depth,precision,and accuracy,the large-depth and high-precision wide field electromagnetic method is applied to the complex structure test area of the Luochang syncline and Yuhe nose anticline in the southern Sichuan.The advantages of the wide field electromagnetic method in detecting deep,low-resistivity thin layers are demonstrated.First,on the basis of the analysis of physical property data,a geological–geoelectric model is established in the test area,and the wide field electromagnetic method is numerically simulated to analyze and evaluate the response characteristics of deep thin shale gas layers on wide field electromagnetic curves.Second,a wide field electromagnetic test is conducted in the complex structure area of southern Sichuan.After data processing and inversion imaging,apparent resistivity logging data are used for calibration to develop an apparent resistivity interpretation model suitable for the test area.On the basis of the results,the characteristics of the electrical structure change in the shallow longitudinal formation of 6 km are implemented,and the transverse electrical distribution characteristics of the deep shale gas layer are delineated.In the prediction area near the well,the subsequent data verification shows that the apparent resistivity obtained using the inversion of the wide field electromagnetic method is consistent with the trend of apparent resistivity revealed by logging,which proves that this method can effectively identify the weak response characteristics of deep shale gas formations in complex structural areas.This experiment,it is shown shows that the wide field electromagnetic method with a large depth and high precision can effectively characterize the electrical characteristics of deep,low-resistivity thin layers in complex structural areas,and a new set of low-cost evaluation technologies for shale gas target layers based on the wide field electromagnetic method is explored.
基金the National Basic Research Program of China (No.2004CB418401)
文摘The apparent ages of samples are obtained from fission track dating of apatite samples collected from the fault zones in Mabian area, southern Sichuan Province. In addition, thermal history is simulated from the obtained data by applying AFT Solve Program, to acquire the thermal evolution history of the samples. The result shows that tectonically the Mabian area was relatively stable between 25 and 3 Ma, compared to the inner parts and other marginal areas of the Tibetan Plateau. The studied area had little response to the rapid uplift events that occurred for several times in the Tibetan Plateau during 25-3 Ma. The latest thermal event related to the activity of the Lidian fault zone (about 8 Ma ) is later than that of the Ebian fault zone (18-15 Ma ) to the west, indicating to some extent that the evolution of fault activity in the Mabian area has migrated from west to east. The latest extensive tectonic uplift occurred since about 3 Ma. As compared with the Xianshuihe fault zone, the Mabian area is closer to the east- ern margin of the plateau, while the time of fast cooling event in this area is later than that in the southeast segment of the Xianshuihe fault zone (3.6-3.46 Ma ). It appears to support the assumption of episodic uplift and stepwise outward extension of the eastern boundary of the Tibetan Plateau in late Cenozoic.