The southwestern depression of the Qiongdongnan Basin(QDNB)hosts thick Cenozoic sediments and awaits major hydrocarbon discovery.Multichannel seismic(MCS)profile CFT2011 across the southwestern QDNB reveals a~60-km-wi...The southwestern depression of the Qiongdongnan Basin(QDNB)hosts thick Cenozoic sediments and awaits major hydrocarbon discovery.Multichannel seismic(MCS)profile CFT2011 across the southwestern QDNB reveals a~60-km-wide fuzzy reflection zone(FRZ)within the sediments,but its origin and distribution remain unclear.Here ocean bottom seismometer(OBS)data of Line CFT2011 are processed with focus on the velocity structures by traveltime tomography inversion and analyzed together with the coincident and adjacent MCS profiles.The OBS velocity results show that the giant FRZ features lower velocity with difference up to 1.5 km/s and smaller vertical velocity gradient than the surrounding sedimentary sequences at the same depth,likely resulting from enhanced fluid infilling.The MCS profile exhibits that the giant FRZ is about 3-9-km thick and extends from the Paleogene strata rich in organic matters upward to the lower Pleistocene sediments.Within the shallow overlying sediments,multiple bright spots with reverse polarity are imaged and their reflection amplitudes increase with offset,consistent with the features of gas-charged sediments.They are probably shallow gas reservoirs with gases sourced from the deep FRZ.Therefore,the FRZ is proposed to be a giant gas-charged zone,which probably contains lots of hydrocarbon gases migrated vertically from the deep Paleogene source rocks through the boundary faults of the depressions and the minor fractures generated under overpressure.This FRZ is also imaged on the adjacent MCS profiles MCS-L1 and MCS-L2 with the width of about 40 km and 68 km,respectively.It is roughly estimated to cover an area of~1900 km2 and host a volume of~11400 km3 assuming an average thickness of 6 km,implying huge natural gas potential in the sedimentary depression of the southwestern QDNB of the South China Sea.展开更多
Based on well horizon calibration,the typical seismic profiles in southwestern Tarim Basin were interpreted systematically,regional geological sections were established,and the regional denudation thickness of each te...Based on well horizon calibration,the typical seismic profiles in southwestern Tarim Basin were interpreted systematically,regional geological sections were established,and the regional denudation thickness of each tectonic period was restored.On this basis,the plane morphology maps of ancient structures of the Cambrian pre-salt dolomites in different periods were compiled,and the spatial distribution,development,evolution and migration of paleo-uplift in the late Early Paleozoic were analyzed.In the late Early Paleozoic,there existed a unified regional paleo-uplift widely distributed in southwestern Tarim Basin,which is called the southwestern Tarim plaeo-uplift.The“Tarim SW paleo-uplift”and“Hetian paleo-uplift”proposed in previous literatures are not independent,but the result of the spatio-temporal migration and evolution of the southwestern Tarim paleo-uplift identified in this paper.The southwestern Tarim paleo-uplift emerged at the end of Middle Ordovician,and took its initial shape with increased amplitude in the Late Ordovician.During the Silurian,the southwestern Tarim paleo-uplift rose steadily and expanded rapidly to the east,incorporating Pishan-Hetian and other areas,with the structural high locating in the Pishan-Hetian area.During the Devonian,the southwestern Tarim paleo-uplift began to shrink gradually,to a limited range in the Pishan-Hetian area in the southern part of the basin.During the Carboniferous,the southwestern Tarim paleo-uplift became an underwater uplift,that is,the paleo-uplift gradually died out.The southwestern Tarim paleo-uplift belongs to the forebulge of the southwestern Tarim foreland basin in the late Early Paleozoic,and its formation and evolution are related to the early Paleozoic orogeny of the West Kunlun orogenic belt in the south of the Tarim Basin.The migration of the southwestern Tarim paleo-uplift from the northwestern part of the southwestern Tarim Basin to the Pishan-Hetian area indicates the early Paleozoic orogenic process of the West Kunlun orogenic belt,which started in the western section at the end of Middle Ordovician and extended from west to east in a“scissor”style.The migration and evolution of the southwestern Tarim paleo-uplift controlled the development of unconformities at the end of Middle Ordovician,the end of Late Ordovician,and the end of Middle Devonian,and the spatial distribution of dissolved fracture-cave reservoirs in weathered crust below the unconformities in the southwest of Tarim Basin.The migration of the structural high of the southwestern Tarim paleo-uplift also played an important role in controlling the development of dissolved fracture-cave reservoirs in weathered crust.展开更多
Marine gas hydrates, one of the largest methane reservoirs on Earth, may greatly affect the deep sea sedimentary environment and biogeochemistry; however, the carbon geochemistry in gas hydrate-bearing sediments is po...Marine gas hydrates, one of the largest methane reservoirs on Earth, may greatly affect the deep sea sedimentary environment and biogeochemistry; however, the carbon geochemistry in gas hydrate-bearing sediments is poorly understood. In this study, we investigated the carbon variables in sediment core 973-3 from the southwestern Taiwan Basin in the South China Sea to understand the effect of environmental factors and archaeal communities on carbon geochemistry. The carbon profiles suggest the methanogenesis with the incerase of dissolved inorganic carbon (DIC) and high total organic carbon (TOC) (mean = 0.46%) originated from terrigenous organic matter (mean j13CToc value of -23.6%0) driven by the abundant methanogen 'Methanosaeta and Methanomicrobiales'. The active anaerobic oxidation of methane is characterized by the increase of DIC and inorganic carbon (IC), and the depleted δ13CIC, coupled with the increase of TOC and the decrease of δ13Croc values owing to the methanotroph 'Methanosarcinales/ANME' in 430-840 cm. Environmental factors and archaeal communities in core 973-3 are significantly correlated to carbon variables owing to methane production and oxidation. Our results indicate that the carbon geochemical characteristics are obviously responding to the formation and decomposition of gas hydrates. Furthermore, pH, Eh and grain size, and Methanosaeta greatly affect the carbon geochemistry in gas hydrate-associated sediments.展开更多
In the southwestern margin of the Ordos Basin,uranium mineralization is primarily hosted by predominantly oxidative red clastic formations in the Lower Cretaceous.The main target layers for uranium exploration are the...In the southwestern margin of the Ordos Basin,uranium mineralization is primarily hosted by predominantly oxidative red clastic formations in the Lower Cretaceous.The main target layers for uranium exploration are the Madongshan and Liwaxia formations of the Liupanshan Group,followed by the Jingchuan Formation of the Zhidan Group.The host rocks(medium-fine feldspar quartz sandstone),which are bleached to a light grayish white color,contain a minor organic matter component and pyrite.Uranium mineralization changes from surficial infiltration or phreatic oxidation in the upper part to interlayer oxidation in the lower part.Uranium ore bodies are mostly lenticular or tabular in shape,locally shaped like crescent rolls.Individual ore bodies are typically small and shallow.Uranium predominantly manifests as pitchblende and coffinite.Coffinite is usually short and columnar or granular in habit,whereas pitchblende occurs as an irregular colloidal covering on the surface or in fissures of ferric oxide,silicate,clay or carbonate.Secondary uranium minerals are torbernite,uranophane,and uranopilite.Minerals associated with uranium are mainly pyrite,chalcopyrite and,to a minor extent,arsenopyrite and fluorite.The associated elements are Mo,V,Se,Co,Ni,and Mn,the host sandstone being high in Cu and Ba.Overall,the red clastic formations in the southwestern margin of the Ordos Basin are characterized by’five multiples but one low’which means multiple target layers,multiple stages of mineralization,multiple ore body shapes,multiple kinds of uranium minerals,multiple associated elements,but low organic matter.This implies an overall complex uranium metallogenic environment and mineralization process.It is recommended that future uranium exploration should take into consideration regional metallogenic conditions and mineralization features,with target layers in the wide-smooth synclinal slope being focused on.Most uranium deposits are small to medium in size,and the main type of uranium mineralization can vary by target layer.展开更多
Based on seismic data,outcrop evidence,logging data and regional aeromagnetic data,the distribution of Nanhua–Sinian rifts in the southwestern Tarim Basin was analyzed,and on the basis of restoration of lithofacies p...Based on seismic data,outcrop evidence,logging data and regional aeromagnetic data,the distribution of Nanhua–Sinian rifts in the southwestern Tarim Basin was analyzed,and on the basis of restoration of lithofacies paleogeography in different periods of Neoproterozoic–Cambrian,the evolution model of the proto-type rift basin was discussed.The Neoproterozoic Rodinia supercontinent split event formed the trigeminal rift system at the edge and inside of the craton in the southwestern Tarim Basin located in the Kunlun piedmont and Maigaiti slope.The rift in Kunlun piedmont zone was distributed along the E-W direction and was the oceanic rift in the trigeminal rift system.Two decadent rifts in N-E strike developed in the Luonan and Yubei areas of Maigaiti slope,and the interior of the rifts were characterized by a composite graben-horst structure composed of multiple grabens and horsts.The Neoproterozoic–Cambrian proto-type basin evolution in the southwestern Tarim Basin can be divided into three stages:rift in the Nanhua,embryonic passive continental margin in the Sinian,and stable passive continental margin in the Cambrian.Despite the regional tectonic movements in the end of Nanhua and Sinian,the tectonic framework of the southwestern Tarim Basin had not changed significantly,the sedimentary center of Nanhua rift basin showed the characteristics of succession in the Sinian–Early Cambrian.The Nanhua rift in Kunlun piedmont evolved into a craton marginal depression during the Sinian–Early Paleozoic,while the Luonan decadent rift in the midsection of Maigaiti slope evolved into a sag inside platform in Early Cambrian,constituting the paleogeographic framework of"two paleouplifts and one sag"with the paleouplifts in east and west sides of the slope.The later evolution of the Luonan decadent rift in the midsection of the Maigaiti slope formed two sets of reservoir-forming assemblages,the Sinian and the Lower Cambrian ones,which are important exploration targets in future.展开更多
The Lanping sedimentary basin has experienced a five-stage evolution since the late Paleozoic: ocean-continent transformation (late Paleozoic to early mid-Triassic); intracontinental rift basin (late mid-Triassic ...The Lanping sedimentary basin has experienced a five-stage evolution since the late Paleozoic: ocean-continent transformation (late Paleozoic to early mid-Triassic); intracontinental rift basin (late mid-Triassic to early Jurassic); down-warped basin (middle to late Jurassic); foreland basin (Cretaceous); and strike-slip basin (Cenozoic). Three major genetic types of Ag-Cu polymetallic ore deposits, including the reworked hydrothermal sedimentary, sedimentary-hydrothermally reworked and hydrothermal vein types, are considered to be the products of basin fluid activity at specific sedimentary-tectonic evolutionary stages. Tectonic differences of the different evolutionary stages resulted in considerable discrepancy in the mechanisms of formation-transportation, migration direction and emplacement processes of the basin fluids, thus causing differences in mineralization styles as well as in genetic types of ore deposit.展开更多
Kupferschiefer type Cu-Ag deposits occur in the Upper Permian Xuanwei Formation in the Leshan-Muchuan region at the southwestern edge of the Sichuan Basin. Evidences from geology, major element, REE and thermolurnines...Kupferschiefer type Cu-Ag deposits occur in the Upper Permian Xuanwei Formation in the Leshan-Muchuan region at the southwestern edge of the Sichuan Basin. Evidences from geology, major element, REE and thermolurninescence analyses suggest that these Kupferschiefer type CuAg deposits were formed during diagenesis and the ore-forming fluids were derived frorn the underlying basalt. Fluid dynamic analyses show that the ore-forming fluids migrated in a unicellular convection, fluids migrated through the basalt, leaching Cu and Ag frorn basalt and forming orebearing solutions, up the western basement highs, moved laterally along the Xuanwei Formation toward the basin centers, presumably to sink back down into the basalt, completing a convection cycle which was about 15 km long, 300 m high and subhorizontal. Further analysis and calculation suggest that there are good geological, tectonic and fluid-dynamic conditions to form middle-scale Cu and giant Ag Kupferschiefer type deposits, but superlarge deposits are unlikely to be formed in this region.展开更多
Surface water basins all over the world are very crucial in irrigation industries. Irrigation schemes are particularly crucial in the agricultural economies due largely to the fact that global climate change has led t...Surface water basins all over the world are very crucial in irrigation industries. Irrigation schemes are particularly crucial in the agricultural economies due largely to the fact that global climate change has led to drastic changes in rainfall patterns. As a result, rain-fed agriculture alone is no more sustainable and irrigation schemes are being encouraged as poverty reduction/eradication strategies in the developing countries. This study was conducted to assess the overall controls on surface water resources in the coastal and south-western river basins in Ghana, and determine the suitability of these surface waters for irrigation activities. Multivariate statistical methods were applied to data on the physico-chemical parameters from the coastal and southwestern river basins. This study finds that the quality of surface water from these basins is controlled principally by leachate of chemicals from solid and mine wastes, the chemistry of rainfall, weathering of underlying silicate mineral-rich rocks and sediments, agricultural and domestic wastes. All the parameters are within the acceptable national concentration ranges for most domestic and industrial purposes. Sodium adsorption ratio (SAR) was used to assess the quality of water from the two basins for irrigation activities. The SAR values for all the months and years sampled are lower than 4 and the electrical conductivity values are equally low due to generally low ionic concentrations. When plotted on the Wilcox diagram, the data for all the months for the two years of the study, plot within the “excellent to good” category, suggesting that water from the area is of acceptable quality for irrigation activities.展开更多
基金Supported by the Guangdong Basic and Applied Basic Research Foundation(Nos.2022A1515011836,2021A1515110851)the Science and Technology Planning Project of Guangzhou(No.202201010230)+5 种基金the Special Support Program for Cultivating High-Level Talents in Guangdong Province(No.2019BT02H594)the Key Special Project for Introduced Talents Team of Southern Marine Science and Engineering Guangdong Laboratory(Guangzhou)(No.GML2019ZD0104)the Open Fund of Key Laboratory of Marine Geology and EnvironmentChinese Academy of Sciences(CAS)(No.MGE2020KG01)the National Natural Science Foundation of China(Nos.U1901217,91855101,41876052,42076218)Dr.Junhui YU is funded by the Special Research Assistant Funding Program of CAS。
文摘The southwestern depression of the Qiongdongnan Basin(QDNB)hosts thick Cenozoic sediments and awaits major hydrocarbon discovery.Multichannel seismic(MCS)profile CFT2011 across the southwestern QDNB reveals a~60-km-wide fuzzy reflection zone(FRZ)within the sediments,but its origin and distribution remain unclear.Here ocean bottom seismometer(OBS)data of Line CFT2011 are processed with focus on the velocity structures by traveltime tomography inversion and analyzed together with the coincident and adjacent MCS profiles.The OBS velocity results show that the giant FRZ features lower velocity with difference up to 1.5 km/s and smaller vertical velocity gradient than the surrounding sedimentary sequences at the same depth,likely resulting from enhanced fluid infilling.The MCS profile exhibits that the giant FRZ is about 3-9-km thick and extends from the Paleogene strata rich in organic matters upward to the lower Pleistocene sediments.Within the shallow overlying sediments,multiple bright spots with reverse polarity are imaged and their reflection amplitudes increase with offset,consistent with the features of gas-charged sediments.They are probably shallow gas reservoirs with gases sourced from the deep FRZ.Therefore,the FRZ is proposed to be a giant gas-charged zone,which probably contains lots of hydrocarbon gases migrated vertically from the deep Paleogene source rocks through the boundary faults of the depressions and the minor fractures generated under overpressure.This FRZ is also imaged on the adjacent MCS profiles MCS-L1 and MCS-L2 with the width of about 40 km and 68 km,respectively.It is roughly estimated to cover an area of~1900 km2 and host a volume of~11400 km3 assuming an average thickness of 6 km,implying huge natural gas potential in the sedimentary depression of the southwestern QDNB of the South China Sea.
基金Supported by the National Science and Technology Major Project(2017ZX005-008-01)Tarim Oilfield Company Project(041014120098).
文摘Based on well horizon calibration,the typical seismic profiles in southwestern Tarim Basin were interpreted systematically,regional geological sections were established,and the regional denudation thickness of each tectonic period was restored.On this basis,the plane morphology maps of ancient structures of the Cambrian pre-salt dolomites in different periods were compiled,and the spatial distribution,development,evolution and migration of paleo-uplift in the late Early Paleozoic were analyzed.In the late Early Paleozoic,there existed a unified regional paleo-uplift widely distributed in southwestern Tarim Basin,which is called the southwestern Tarim plaeo-uplift.The“Tarim SW paleo-uplift”and“Hetian paleo-uplift”proposed in previous literatures are not independent,but the result of the spatio-temporal migration and evolution of the southwestern Tarim paleo-uplift identified in this paper.The southwestern Tarim paleo-uplift emerged at the end of Middle Ordovician,and took its initial shape with increased amplitude in the Late Ordovician.During the Silurian,the southwestern Tarim paleo-uplift rose steadily and expanded rapidly to the east,incorporating Pishan-Hetian and other areas,with the structural high locating in the Pishan-Hetian area.During the Devonian,the southwestern Tarim paleo-uplift began to shrink gradually,to a limited range in the Pishan-Hetian area in the southern part of the basin.During the Carboniferous,the southwestern Tarim paleo-uplift became an underwater uplift,that is,the paleo-uplift gradually died out.The southwestern Tarim paleo-uplift belongs to the forebulge of the southwestern Tarim foreland basin in the late Early Paleozoic,and its formation and evolution are related to the early Paleozoic orogeny of the West Kunlun orogenic belt in the south of the Tarim Basin.The migration of the southwestern Tarim paleo-uplift from the northwestern part of the southwestern Tarim Basin to the Pishan-Hetian area indicates the early Paleozoic orogenic process of the West Kunlun orogenic belt,which started in the western section at the end of Middle Ordovician and extended from west to east in a“scissor”style.The migration and evolution of the southwestern Tarim paleo-uplift controlled the development of unconformities at the end of Middle Ordovician,the end of Late Ordovician,and the end of Middle Devonian,and the spatial distribution of dissolved fracture-cave reservoirs in weathered crust below the unconformities in the southwest of Tarim Basin.The migration of the structural high of the southwestern Tarim paleo-uplift also played an important role in controlling the development of dissolved fracture-cave reservoirs in weathered crust.
基金supported by grants from the National Natural Science Foundation of China(No.41276046 and 41773078)
文摘Marine gas hydrates, one of the largest methane reservoirs on Earth, may greatly affect the deep sea sedimentary environment and biogeochemistry; however, the carbon geochemistry in gas hydrate-bearing sediments is poorly understood. In this study, we investigated the carbon variables in sediment core 973-3 from the southwestern Taiwan Basin in the South China Sea to understand the effect of environmental factors and archaeal communities on carbon geochemistry. The carbon profiles suggest the methanogenesis with the incerase of dissolved inorganic carbon (DIC) and high total organic carbon (TOC) (mean = 0.46%) originated from terrigenous organic matter (mean j13CToc value of -23.6%0) driven by the abundant methanogen 'Methanosaeta and Methanomicrobiales'. The active anaerobic oxidation of methane is characterized by the increase of DIC and inorganic carbon (IC), and the depleted δ13CIC, coupled with the increase of TOC and the decrease of δ13Croc values owing to the methanotroph 'Methanosarcinales/ANME' in 430-840 cm. Environmental factors and archaeal communities in core 973-3 are significantly correlated to carbon variables owing to methane production and oxidation. Our results indicate that the carbon geochemical characteristics are obviously responding to the formation and decomposition of gas hydrates. Furthermore, pH, Eh and grain size, and Methanosaeta greatly affect the carbon geochemistry in gas hydrate-associated sediments.
基金jointly supported by Key Factors Identification and Targets Delineation of Sandstone Type Uranium Deposits in the Southern Ordos Basin(CNNC Integrated R&D Project,Code:Geo LTD1601–3)Scientific Research in Production Project issued by the Bureau of Geology,CNNC(Code:201902-7)the Chinese Geological Survey project(Code:DD201908135)。
文摘In the southwestern margin of the Ordos Basin,uranium mineralization is primarily hosted by predominantly oxidative red clastic formations in the Lower Cretaceous.The main target layers for uranium exploration are the Madongshan and Liwaxia formations of the Liupanshan Group,followed by the Jingchuan Formation of the Zhidan Group.The host rocks(medium-fine feldspar quartz sandstone),which are bleached to a light grayish white color,contain a minor organic matter component and pyrite.Uranium mineralization changes from surficial infiltration or phreatic oxidation in the upper part to interlayer oxidation in the lower part.Uranium ore bodies are mostly lenticular or tabular in shape,locally shaped like crescent rolls.Individual ore bodies are typically small and shallow.Uranium predominantly manifests as pitchblende and coffinite.Coffinite is usually short and columnar or granular in habit,whereas pitchblende occurs as an irregular colloidal covering on the surface or in fissures of ferric oxide,silicate,clay or carbonate.Secondary uranium minerals are torbernite,uranophane,and uranopilite.Minerals associated with uranium are mainly pyrite,chalcopyrite and,to a minor extent,arsenopyrite and fluorite.The associated elements are Mo,V,Se,Co,Ni,and Mn,the host sandstone being high in Cu and Ba.Overall,the red clastic formations in the southwestern margin of the Ordos Basin are characterized by’five multiples but one low’which means multiple target layers,multiple stages of mineralization,multiple ore body shapes,multiple kinds of uranium minerals,multiple associated elements,but low organic matter.This implies an overall complex uranium metallogenic environment and mineralization process.It is recommended that future uranium exploration should take into consideration regional metallogenic conditions and mineralization features,with target layers in the wide-smooth synclinal slope being focused on.Most uranium deposits are small to medium in size,and the main type of uranium mineralization can vary by target layer.
基金Supported by China National Science and Technology Major Project(2016ZX05004-003)the PetroChina Science and Technology Major Project(kt2018-02-04)
文摘Based on seismic data,outcrop evidence,logging data and regional aeromagnetic data,the distribution of Nanhua–Sinian rifts in the southwestern Tarim Basin was analyzed,and on the basis of restoration of lithofacies paleogeography in different periods of Neoproterozoic–Cambrian,the evolution model of the proto-type rift basin was discussed.The Neoproterozoic Rodinia supercontinent split event formed the trigeminal rift system at the edge and inside of the craton in the southwestern Tarim Basin located in the Kunlun piedmont and Maigaiti slope.The rift in Kunlun piedmont zone was distributed along the E-W direction and was the oceanic rift in the trigeminal rift system.Two decadent rifts in N-E strike developed in the Luonan and Yubei areas of Maigaiti slope,and the interior of the rifts were characterized by a composite graben-horst structure composed of multiple grabens and horsts.The Neoproterozoic–Cambrian proto-type basin evolution in the southwestern Tarim Basin can be divided into three stages:rift in the Nanhua,embryonic passive continental margin in the Sinian,and stable passive continental margin in the Cambrian.Despite the regional tectonic movements in the end of Nanhua and Sinian,the tectonic framework of the southwestern Tarim Basin had not changed significantly,the sedimentary center of Nanhua rift basin showed the characteristics of succession in the Sinian–Early Cambrian.The Nanhua rift in Kunlun piedmont evolved into a craton marginal depression during the Sinian–Early Paleozoic,while the Luonan decadent rift in the midsection of Maigaiti slope evolved into a sag inside platform in Early Cambrian,constituting the paleogeographic framework of"two paleouplifts and one sag"with the paleouplifts in east and west sides of the slope.The later evolution of the Luonan decadent rift in the midsection of the Maigaiti slope formed two sets of reservoir-forming assemblages,the Sinian and the Lower Cambrian ones,which are important exploration targets in future.
基金supported by the National Natural Science Foundation of China under the grants 40573031 and 40772060the 973 National Basic Research Priorities Program(2006CB701402)+1 种基金the 111 Project(No.B07011)of the Ministry of Educationthe State Key Laboratory of Geological Processes and Mineral Resources,China University of Geosciences under grant no.GPMR0531
文摘The Lanping sedimentary basin has experienced a five-stage evolution since the late Paleozoic: ocean-continent transformation (late Paleozoic to early mid-Triassic); intracontinental rift basin (late mid-Triassic to early Jurassic); down-warped basin (middle to late Jurassic); foreland basin (Cretaceous); and strike-slip basin (Cenozoic). Three major genetic types of Ag-Cu polymetallic ore deposits, including the reworked hydrothermal sedimentary, sedimentary-hydrothermally reworked and hydrothermal vein types, are considered to be the products of basin fluid activity at specific sedimentary-tectonic evolutionary stages. Tectonic differences of the different evolutionary stages resulted in considerable discrepancy in the mechanisms of formation-transportation, migration direction and emplacement processes of the basin fluids, thus causing differences in mineralization styles as well as in genetic types of ore deposit.
文摘Kupferschiefer type Cu-Ag deposits occur in the Upper Permian Xuanwei Formation in the Leshan-Muchuan region at the southwestern edge of the Sichuan Basin. Evidences from geology, major element, REE and thermolurninescence analyses suggest that these Kupferschiefer type CuAg deposits were formed during diagenesis and the ore-forming fluids were derived frorn the underlying basalt. Fluid dynamic analyses show that the ore-forming fluids migrated in a unicellular convection, fluids migrated through the basalt, leaching Cu and Ag frorn basalt and forming orebearing solutions, up the western basement highs, moved laterally along the Xuanwei Formation toward the basin centers, presumably to sink back down into the basalt, completing a convection cycle which was about 15 km long, 300 m high and subhorizontal. Further analysis and calculation suggest that there are good geological, tectonic and fluid-dynamic conditions to form middle-scale Cu and giant Ag Kupferschiefer type deposits, but superlarge deposits are unlikely to be formed in this region.
文摘Surface water basins all over the world are very crucial in irrigation industries. Irrigation schemes are particularly crucial in the agricultural economies due largely to the fact that global climate change has led to drastic changes in rainfall patterns. As a result, rain-fed agriculture alone is no more sustainable and irrigation schemes are being encouraged as poverty reduction/eradication strategies in the developing countries. This study was conducted to assess the overall controls on surface water resources in the coastal and south-western river basins in Ghana, and determine the suitability of these surface waters for irrigation activities. Multivariate statistical methods were applied to data on the physico-chemical parameters from the coastal and southwestern river basins. This study finds that the quality of surface water from these basins is controlled principally by leachate of chemicals from solid and mine wastes, the chemistry of rainfall, weathering of underlying silicate mineral-rich rocks and sediments, agricultural and domestic wastes. All the parameters are within the acceptable national concentration ranges for most domestic and industrial purposes. Sodium adsorption ratio (SAR) was used to assess the quality of water from the two basins for irrigation activities. The SAR values for all the months and years sampled are lower than 4 and the electrical conductivity values are equally low due to generally low ionic concentrations. When plotted on the Wilcox diagram, the data for all the months for the two years of the study, plot within the “excellent to good” category, suggesting that water from the area is of acceptable quality for irrigation activities.