For a set S of real numbers, we introduce the concept of S-almost automorphic functions valued in a Banach space. It generalizes in particular the space of Z-almost automorphic functions. Considering the space of S-al...For a set S of real numbers, we introduce the concept of S-almost automorphic functions valued in a Banach space. It generalizes in particular the space of Z-almost automorphic functions. Considering the space of S-almost automorphic functions, we give sufficient conditions of the existence and uniqueness of almost automorphic solutions of a differential equation with a piecewise constant argument of generalized type. This is done using the Banach fixed point theorem.展开更多
In this paper we discuss the existence and global attractivity of k-almost automorphic sequence solution of a model of cellular neural networks. We consider the corresponding difference equation analogue of the model ...In this paper we discuss the existence and global attractivity of k-almost automorphic sequence solution of a model of cellular neural networks. We consider the corresponding difference equation analogue of the model system using suitable discretization method and obtain certain conditions for the existence of solution. Almost automorphic function is a good generalization of almost periodic function. This is the first paper considering such solutions of the neural networks.展开更多
The Khuri-Jones correction to the partial wave scattering amplitude at threshold is an automorphic function for a dihedron. An expression for the partial wave amplitude is obtained at the pole which the upper half-pla...The Khuri-Jones correction to the partial wave scattering amplitude at threshold is an automorphic function for a dihedron. An expression for the partial wave amplitude is obtained at the pole which the upper half-plane maps on to the interior of semi-infinite strip. The Lehmann ellipse exists below threshold for bound states. As the system goes from below to above threshold, the discrete dihedral (elliptic) group of Type 1 transforms into a Type 3 group, whose loxodromic elements leave the fixed points 0 and ∞ invariant. The transformation of the indifferent fixed points from -1 and +1 to the source-sink fixed points 0 and ∞ is the result of a finite resonance width in the imaginary component of the angular momentum. The change in symmetry of the groups, and consequently their tessellations, can be used to distinguish bound states from resonances.展开更多
Suppose F is a field of characteristic not 2 and F* its multiplicative group. Let T*n(F) be the multiplicative group of invertible upper triangular n x n matrices over F and STn(F) its subgroup {(aij) E T*n(F)aii = 1,...Suppose F is a field of characteristic not 2 and F* its multiplicative group. Let T*n(F) be the multiplicative group of invertible upper triangular n x n matrices over F and STn(F) its subgroup {(aij) E T*n(F)aii = 1, i}. This paper proves that f: T*n(F) → T*n(F) is a group automorphism if and only if there exist a matrix Q in T*n(F) and a field automorphism rs of F such that either where A = ((aij)), A-T is the transpose inverse of A, J = Ei n+1-i, and : i= 1T*n(F) → F* is a homomorphism which satisfies {(xIn)(x)x F*} = F* and {x F*(xIn)(x) = 1} = {1}. Simultaneously, they also determine the automorphisms of STn(F).展开更多
Let G be a finitely generated torsion-free nilpotent group and a an automorphism of prime order p of G. If the map ψ : G → G defined by g^φ = [g, α] is surjective, then the nilpotent class of G is at most h(p),...Let G be a finitely generated torsion-free nilpotent group and a an automorphism of prime order p of G. If the map ψ : G → G defined by g^φ = [g, α] is surjective, then the nilpotent class of G is at most h(p), where h(p) is a function depending only on p. In particular, if α^3 = 1, then the nilpotent class of G is at most 2.展开更多
In this paper, we determine the order of automorphism group of p-groups in the third family ( Φ 3) and the fourth family ( Φ 4) in [1], whose order is p^6(p≥3). Here p denotes an odd prime.
In this paper by techniques of group we give some formulae for solving the general quadratic equations of two variables over a finite field,completely calculate and uniformly deal with the orders of automorphism group...In this paper by techniques of group we give some formulae for solving the general quadratic equations of two variables over a finite field,completely calculate and uniformly deal with the orders of automorphism groups of all p-groups of orders less than p6 under the P Hall's concept of isoclinism,also make a number of corrections for orders of automorphism groups offered for a mistake or fault before.展开更多
We study the Banach-Lie group Ltaut(A) of Lie triple automorphisms of a complex associative H^*-algebra A. Some consequences about its Lie algebra, the algebra of Lie triple derivations of A, Ltder(A), are obtain...We study the Banach-Lie group Ltaut(A) of Lie triple automorphisms of a complex associative H^*-algebra A. Some consequences about its Lie algebra, the algebra of Lie triple derivations of A, Ltder(A), are obtained. For a topologically simple A, in the infinite-dimensional case we have Ltaut(A)0 = Aut(A) implying Ltder(A) = Der(A). In the finite-dimensional case Ltaut(A)0 is a direct product of Aut(A) and a certain subgroup of Lie derivations δ from A to its center, annihilating commutators.展开更多
Using the metabelian property, regularity, p-commutativity and some properties of congruence, this paper gave the orders of automorphism groups of family Ф24, which are the groups of order p^6 determined by Rodney Ja...Using the metabelian property, regularity, p-commutativity and some properties of congruence, this paper gave the orders of automorphism groups of family Ф24, which are the groups of order p^6 determined by Rodney James, where p denotes an odd prime.展开更多
In the paper we obtain two infinite classes of p-groups, calculate the orders of their automorphism groups and correct a mistake(perhaps misprinted) of Rodney James' paper in 1980.
In this paper,the authors determine maximal connected automorphism group of the Lie transformation group T(D(VN,F)),which acting on the normal Siegel domain D(VN,F)is simple and transitive,and prove that the max...In this paper,the authors determine maximal connected automorphism group of the Lie transformation group T(D(VN,F)),which acting on the normal Siegel domain D(VN,F)is simple and transitive,and prove that the maximal connected automorphism group of T(D(VN,F))is its maximal connected inner automorphism group.展开更多
Let G be a finite group and Outcoz(G) the Coleman outer automorphism group of G(for the definition, see below). The question whether Outcol(G) is a p′-group naturally arises from the study of the normalizer pro...Let G be a finite group and Outcoz(G) the Coleman outer automorphism group of G(for the definition, see below). The question whether Outcol(G) is a p′-group naturally arises from the study of the normalizer problem for integral group rings, where p is a prime. In this article, some sufficient conditions for OutCol(G) to be a p'-group are obtained. Our results generalize some well-known theorems.展开更多
Let X denote a finite or infinite dimensional Lie algebra of Cartan type W, S, H or K over a field of characteristic p 〉 3. In this paper it is proved that certain filtrations of the underlying algebras are invariant...Let X denote a finite or infinite dimensional Lie algebra of Cartan type W, S, H or K over a field of characteristic p 〉 3. In this paper it is proved that certain filtrations of the underlying algebras are invariant under the admissible groups relative to Lie algebras of Cartan type X.展开更多
Let F be a field of characteristic not 2, and let A be a finite-dimensional semisimple F -algebra. All local automorphisms of A are characterized when all the degrees of A are larger than 1. If F is further assumed to...Let F be a field of characteristic not 2, and let A be a finite-dimensional semisimple F -algebra. All local automorphisms of A are characterized when all the degrees of A are larger than 1. If F is further assumed to be an algebraically closed field of characteristic zero, K a finite group, F K the group algebra of K over F , then all local automorphisms of F K are also characterized.展开更多
Let R be a prime ring, L a noncentral Lie ideal and a nontrivialautomorphism of R such that us(u)ut = 0 for all u 2 L, where s; t are fixednon-negative integers. If either charR 〉 s + t or charR = 0, then R satis...Let R be a prime ring, L a noncentral Lie ideal and a nontrivialautomorphism of R such that us(u)ut = 0 for all u 2 L, where s; t are fixednon-negative integers. If either charR 〉 s + t or charR = 0, then R satisfies s4, thestandard identity in four variables. We also examine the identity (σ([x; y])-[x; y])n =0 for all x; y ∈ I, where I is a nonzero ideal of R and n is a fixed positive integer. Ifeither charR 〉 n or charR = 0, then R is commutative.展开更多
Boolean homomorphisms of a hypercube, which correspond to the morphisms in the category of finite Boolean algebras, coincide with the linear isometries of the category of finite binary metric vector spaces.
In this paper,the automorphism group of G is determined,where G is a 4 × 4 upper unitriangular matrix group over Z.Let K be the subgroup of AutG consisting of all elements of AutG which act trivially on G/G,G /ζ...In this paper,the automorphism group of G is determined,where G is a 4 × 4 upper unitriangular matrix group over Z.Let K be the subgroup of AutG consisting of all elements of AutG which act trivially on G/G,G /ζG and ζG,then (i) InnG ■ K ■ AutG;(ii) AutG/K≌=G_1×D_8×Z_2,where G_1=(a,b,c|a^4=b^2=c^2=1,a^b=a^(-1),[a,c]= [b,c]=1 ;(iii) K/Inn G≌=Z×Z×Z.展开更多
The orders of automorphism groups of the groups of order p^6 in the twelve family Ф12 axe produced, where p is an odd prime. Every group is analysed by utilizing the properties of metabelian, regularity and p-commuta...The orders of automorphism groups of the groups of order p^6 in the twelve family Ф12 axe produced, where p is an odd prime. Every group is analysed by utilizing the properties of metabelian, regularity and p-commutativity of finite p-groups, and the structure of the generators of its automorphism groups is obtained. Then the orders of automorphism groups are determined through some properties of equivalence in number theory.展开更多
We study the Poisson-Lie structures on the group SU(2,R). We calculate all Poisson-Lie structures on SU(2,R) through the correspondence with Lie bialgebra structures on its Lie algebra su(2,R). We show that all these ...We study the Poisson-Lie structures on the group SU(2,R). We calculate all Poisson-Lie structures on SU(2,R) through the correspondence with Lie bialgebra structures on its Lie algebra su(2,R). We show that all these structures are linearizable in the neighborhood of the unity of the group SU(2,R). Finally, we show that the Lie algebra consisting of all infinitesimal automorphisms is strictly contained in the Lie algebra consisting of Hamiltonian vector fields.展开更多
文摘For a set S of real numbers, we introduce the concept of S-almost automorphic functions valued in a Banach space. It generalizes in particular the space of Z-almost automorphic functions. Considering the space of S-almost automorphic functions, we give sufficient conditions of the existence and uniqueness of almost automorphic solutions of a differential equation with a piecewise constant argument of generalized type. This is done using the Banach fixed point theorem.
基金supported by the National Natural Science Foundation of China (10901140, 11171090)ZJNSFC (Y6100029, Y6100696, Y6110195)
文摘In this paper we discuss the existence and global attractivity of k-almost automorphic sequence solution of a model of cellular neural networks. We consider the corresponding difference equation analogue of the model system using suitable discretization method and obtain certain conditions for the existence of solution. Almost automorphic function is a good generalization of almost periodic function. This is the first paper considering such solutions of the neural networks.
文摘The Khuri-Jones correction to the partial wave scattering amplitude at threshold is an automorphic function for a dihedron. An expression for the partial wave amplitude is obtained at the pole which the upper half-plane maps on to the interior of semi-infinite strip. The Lehmann ellipse exists below threshold for bound states. As the system goes from below to above threshold, the discrete dihedral (elliptic) group of Type 1 transforms into a Type 3 group, whose loxodromic elements leave the fixed points 0 and ∞ invariant. The transformation of the indifferent fixed points from -1 and +1 to the source-sink fixed points 0 and ∞ is the result of a finite resonance width in the imaginary component of the angular momentum. The change in symmetry of the groups, and consequently their tessellations, can be used to distinguish bound states from resonances.
基金This work is supported by NSF of China NSF of Heilongjiang province
文摘Suppose F is a field of characteristic not 2 and F* its multiplicative group. Let T*n(F) be the multiplicative group of invertible upper triangular n x n matrices over F and STn(F) its subgroup {(aij) E T*n(F)aii = 1, i}. This paper proves that f: T*n(F) → T*n(F) is a group automorphism if and only if there exist a matrix Q in T*n(F) and a field automorphism rs of F such that either where A = ((aij)), A-T is the transpose inverse of A, J = Ei n+1-i, and : i= 1T*n(F) → F* is a homomorphism which satisfies {(xIn)(x)x F*} = F* and {x F*(xIn)(x) = 1} = {1}. Simultaneously, they also determine the automorphisms of STn(F).
基金The NSF(11371124)of Chinathe NSF(F2015402033)of Hebei Provincethe Doctoral Special Foundation(20120066)of Hebei University of Engineering
文摘Let G be a finitely generated torsion-free nilpotent group and a an automorphism of prime order p of G. If the map ψ : G → G defined by g^φ = [g, α] is surjective, then the nilpotent class of G is at most h(p), where h(p) is a function depending only on p. In particular, if α^3 = 1, then the nilpotent class of G is at most 2.
文摘In this paper, we determine the order of automorphism group of p-groups in the third family ( Φ 3) and the fourth family ( Φ 4) in [1], whose order is p^6(p≥3). Here p denotes an odd prime.
基金Supported by the National Natural Science Foundation of China(61074185)Supported by the Projection of Science and Technique for Guangdong Province(2009B030802044)+1 种基金Supported by the Projection of Production,Study and Investigation for Guangdong Province(2010B090301042)Supported by the Science and Study Foundation of Guangxi University(XB2100285)
文摘In this paper by techniques of group we give some formulae for solving the general quadratic equations of two variables over a finite field,completely calculate and uniformly deal with the orders of automorphism groups of all p-groups of orders less than p6 under the P Hall's concept of isoclinism,also make a number of corrections for orders of automorphism groups offered for a mistake or fault before.
基金Supported by the PCI of the UCA ‘Teoría de Lie y Teoría de Espacios de Banachthe PAI with project numbers FQM-298 and FQM-336the project of the Spanish Ministerio de Educación y Ciencia MTM2004-06580-C02-02 and with fondos FEDER
文摘We study the Banach-Lie group Ltaut(A) of Lie triple automorphisms of a complex associative H^*-algebra A. Some consequences about its Lie algebra, the algebra of Lie triple derivations of A, Ltder(A), are obtained. For a topologically simple A, in the infinite-dimensional case we have Ltaut(A)0 = Aut(A) implying Ltder(A) = Der(A). In the finite-dimensional case Ltaut(A)0 is a direct product of Aut(A) and a certain subgroup of Lie derivations δ from A to its center, annihilating commutators.
基金The Science Research Foundation of Chongqing Municipal Education Commission of China(KJ050611)
文摘Using the metabelian property, regularity, p-commutativity and some properties of congruence, this paper gave the orders of automorphism groups of family Ф24, which are the groups of order p^6 determined by Rodney James, where p denotes an odd prime.
基金Supported by NNSF of China(60574052)Supported by NSF(05001820)Supported by PST of Guangdong(2005B33301008)
文摘In the paper we obtain two infinite classes of p-groups, calculate the orders of their automorphism groups and correct a mistake(perhaps misprinted) of Rodney James' paper in 1980.
基金Supported by the National Science Foundation of China(11047030) Supported by the Natural Science Foundation of Henan Provincial Education Department(2010B11003) Supported by the Natural Science Foundation of Henan University(2009YBZR025)
文摘In this paper,the authors determine maximal connected automorphism group of the Lie transformation group T(D(VN,F)),which acting on the normal Siegel domain D(VN,F)is simple and transitive,and prove that the maximal connected automorphism group of T(D(VN,F))is its maximal connected inner automorphism group.
基金Supported by NSF of China(11171169)the B.S.Foundation of Shandong Province(BS2012SF003)
文摘Let G be a finite group and Outcoz(G) the Coleman outer automorphism group of G(for the definition, see below). The question whether Outcol(G) is a p′-group naturally arises from the study of the normalizer problem for integral group rings, where p is a prime. In this article, some sufficient conditions for OutCol(G) to be a p'-group are obtained. Our results generalize some well-known theorems.
基金The NSF(11171055)of Chinathe NSF(JC201004 and A200903)of Heilongjiang Province of Chinathe NSF(12511349)of Heilongjiang Educational Committee of China
文摘Let X denote a finite or infinite dimensional Lie algebra of Cartan type W, S, H or K over a field of characteristic p 〉 3. In this paper it is proved that certain filtrations of the underlying algebras are invariant under the admissible groups relative to Lie algebras of Cartan type X.
基金Supported by the Fundamental Research Funds for the Central Universities
文摘Let F be a field of characteristic not 2, and let A be a finite-dimensional semisimple F -algebra. All local automorphisms of A are characterized when all the degrees of A are larger than 1. If F is further assumed to be an algebraically closed field of characteristic zero, K a finite group, F K the group algebra of K over F , then all local automorphisms of F K are also characterized.
基金The NSF(1408085QA08) of Anhui Provincethe Natural Science Research Foundation(KJ2014A183) of Anhui Provincial Education DepartmentAnhui Province College Excellent Young Talents Fund Project(2012SQRL155) of China
文摘Let R be a prime ring, L a noncentral Lie ideal and a nontrivialautomorphism of R such that us(u)ut = 0 for all u 2 L, where s; t are fixednon-negative integers. If either charR 〉 s + t or charR = 0, then R satisfies s4, thestandard identity in four variables. We also examine the identity (σ([x; y])-[x; y])n =0 for all x; y ∈ I, where I is a nonzero ideal of R and n is a fixed positive integer. Ifeither charR 〉 n or charR = 0, then R is commutative.
文摘Boolean homomorphisms of a hypercube, which correspond to the morphisms in the category of finite Boolean algebras, coincide with the linear isometries of the category of finite binary metric vector spaces.
基金Supported by the Tianyuan Fund for Mathematics of NSFC(11126273)Supported by the NSF of Henan Educational Committee(2011B110011)Supported by the Doctor Foundation of Henan University of Technology(2009BS029)
文摘In this paper,the automorphism group of G is determined,where G is a 4 × 4 upper unitriangular matrix group over Z.Let K be the subgroup of AutG consisting of all elements of AutG which act trivially on G/G,G /ζG and ζG,then (i) InnG ■ K ■ AutG;(ii) AutG/K≌=G_1×D_8×Z_2,where G_1=(a,b,c|a^4=b^2=c^2=1,a^b=a^(-1),[a,c]= [b,c]=1 ;(iii) K/Inn G≌=Z×Z×Z.
基金The Science Research Foundation of Chongqing Municipal Education Commission of China(KJ050611)
文摘The orders of automorphism groups of the groups of order p^6 in the twelve family Ф12 axe produced, where p is an odd prime. Every group is analysed by utilizing the properties of metabelian, regularity and p-commutativity of finite p-groups, and the structure of the generators of its automorphism groups is obtained. Then the orders of automorphism groups are determined through some properties of equivalence in number theory.
文摘We study the Poisson-Lie structures on the group SU(2,R). We calculate all Poisson-Lie structures on SU(2,R) through the correspondence with Lie bialgebra structures on its Lie algebra su(2,R). We show that all these structures are linearizable in the neighborhood of the unity of the group SU(2,R). Finally, we show that the Lie algebra consisting of all infinitesimal automorphisms is strictly contained in the Lie algebra consisting of Hamiltonian vector fields.