China has successfully launched six lunar probes so far.From Chang'E-1 to Chang'E-4,they completed the circling,landing and roving exploration,of which Chang'E-4 was the first landing on the far side of th...China has successfully launched six lunar probes so far.From Chang'E-1 to Chang'E-4,they completed the circling,landing and roving exploration,of which Chang'E-4 was the first landing on the far side of the Moon in human history.Chang'E-5 was launched in December 2020,bringing back 1731 g of lunar soil samples.Through the detailed analysis of the samples,the scientists understand the history of late lunar volcanism,specifically extending lunar volcanism by about 800 million to 1 billion years,and proposed possible mechanisms.In addition,there are many new understandings of space weathering such as meteorite impacts and solar wind radiation on the Moon.China's first Mars exploration mission Tianwen-1 was successfully launched in July 2021.Through the study of scientific data,a number of important scientific achievements have been made in the topography,water environment and shallow surface structure of Mars.This paper introduces the main scientific achievements of Chang'E-4,Chang'E-5 and Tianwen-1 in the past two years,excluding technical and engineering contents.Due to the large number of articles involved,this paper only introduces part of the results.展开更多
The spacecraft for deep space exploration missions will face extreme environments,including cryogenic temperature,intense radiation,wide-range temperature variations and even the combination of conditions mentioned ab...The spacecraft for deep space exploration missions will face extreme environments,including cryogenic temperature,intense radiation,wide-range temperature variations and even the combination of conditions mentioned above.Harsh environments will lead to solder joints degradation or even failure,resulting in damage to onboard electronics.The research activities on high reliability solder joints using in extreme environments can not only reduce the use of onboard protection devices,but effectively improve the overall reliability of spacecraft,which is of great significance to the aviation industry.In this paper,we review the reliability research on SnPb solder alloys,Sn-based lead-free solder alloys and In-based solder alloys in extreme environments,and try to provide some suggestions for the follow-up studies,which focus on solder joint reliability under extreme environments.展开更多
The footpad structure of a deep space exploration lander is a critical system that makes the initial contact with the ground,and thereby plays a crucial role in determining the stability and energy absorption characte...The footpad structure of a deep space exploration lander is a critical system that makes the initial contact with the ground,and thereby plays a crucial role in determining the stability and energy absorption characteristics during the impact process.The conventional footpad is typically designed with an aluminum honeycomb structure that dissipates energy through plastic deformation.Nevertheless,its effectiveness in providing cushioning and energy absorption becomes significantly compromised when the structure is crushed,rendering it unusable for reusable landers in the future.This study presents a methodology for designing and evaluating structural energy absorption systems incorporating recoverable strain constraints of shape memory alloys(SMA).The topological configuration of the energy absorbing structure is derived using an equivalent static load method(ESL),and three lightweight footpad designs featuring honeycomb-like Ni-Ti shape memory alloys structures and having variable stiffness skins are proposed.To verify the accuracy of the numerical modelling,a honeycomb-like structure subjected to compression load is modeled and then compared with experimental results.Moreover,the influence of the configurations and thickness distribution of the proposed structures on their energy absorption performance is comprehensively evaluated using finite element simulations.The results demonstrate that the proposed design approach effectively regulates the strain threshold to maintain the SMA within the constraint of maximum recoverable strain,resulting in a structural energy absorption capacity of 362 J/kg with a crushing force efficiency greater than 63%.展开更多
With the advantages of high reliability, power density, and long life, nuclear power reactors have become a promising option for space power. In this study, the Reactor Excursion and Leak Analysis Program 5(RELAP5), w...With the advantages of high reliability, power density, and long life, nuclear power reactors have become a promising option for space power. In this study, the Reactor Excursion and Leak Analysis Program 5(RELAP5), with the implementation of sodium–potassium eutectic alloy(NaK-78) properties and heat transfer correlations, is adopted to analyze the thermal–hydraulic characteristics of the space nuclear reactor TOPAZ-Ⅱ.A RELAP5 model including thermionic fuel elements(TFEs), reactor core, radiator, coolant loop, and volume accumulator is established. The temperature reactivity feedback effects of the fuel, TFE emitter, TFE collector,moderator, and reactivity insertion effects of the control drums and safety drums are considered. To benchmark the integrated TOPAZ-Ⅱ system model, an electrical ground test of the fully integrated TOPAZ-Ⅱ system, the V-71 unit,is simulated and analyzed. The calculated coolant temperature and system pressure are in acceptable agreement with the experimental data for the maximum relative errors of 8 and 10%, respectively. The detailed thermal–hydraulic characteristics of TOPAZ-Ⅱ are then simulated and analyzed at the steady state. The calculation results agree well with the design values. The current work provides a solid foundation for space reactor design and transient analysis in the future.展开更多
The current lunar exploration has changed from a single scientific exploration to science and resource utilization. On the basis of the previous lunar exploration, Chinese scientists and technical experts have propose...The current lunar exploration has changed from a single scientific exploration to science and resource utilization. On the basis of the previous lunar exploration, Chinese scientists and technical experts have proposed an overall plan to preliminarily build a lunar research station on the lunar South Pole by several missions before 2035, exploring of the moon, as well as the use of lunar platforms and in-site utilization of resources. In addition, China will also explore Mars, asteroids and Jupiter and its moons. This paper briefly introduces the ideas of Chinese scientists and technical experts on the lunar and deep space exploration.展开更多
China has carried out four unmanned missions to the Moon since it launched Chang’E-1,the first lunar orbiter in 2007.With the implementation of the Chang’E-5 mission this year,the three phases of the lunar explorati...China has carried out four unmanned missions to the Moon since it launched Chang’E-1,the first lunar orbiter in 2007.With the implementation of the Chang’E-5 mission this year,the three phases of the lunar exploration program,namely orbiting,landing and returning,have been completed.In the plan of follow-up unmanned lunar exploration missions,it is planned to establish an experimental lunar research station at the lunar south pole by 2030 through the implementation of several missions,laying a foundation for the establishment of practical lunar research station in the future.China successfully launched its first Mars probe on 23 July 2020,followed in future by an asteroid mission,second Mars mission,and a mission to explore Jupiter and its moons.展开更多
Four future missions for deep space exploration and future space-based exoplanet surveys on habitable planets by 2030 are scheduled to be launched.Two Mars exploration missions are designed to investigate geological s...Four future missions for deep space exploration and future space-based exoplanet surveys on habitable planets by 2030 are scheduled to be launched.Two Mars exploration missions are designed to investigate geological structure,the material on Martian surface,and retrieve returned samples.The asteroids and main belt comet exploration is expected to explore two objects within 10 years.The small-body mission will aim to land on the asteroid and get samples return to Earth.The basic physical characteristics of the two objects will be obtained through the mission.The exploration of Jupiter system will characterize the environment of Jupiter and the four largest Moons and understand the atmosphere of Jupiter.In addition,we further introduce two space-based exoplanet survey by 2030,Miyin Program and Closeby Habitable Exoplanet Survey(CHES Mission).Miyin program aims to detect habitable exoplanets using interferometry,while CHES mission expects to discover habitable exoplanets orbiting FGK stars within 10 pc through astrometry.The above-mentioned missions are positively to achieve breakthroughs in the field of planetary science.展开更多
In order to realize the explorer autonomy, the software architecture of autonomous mission management system (AMMS) is given for the deep space explorer, and the autonomous mission planning system, the kernel part of ...In order to realize the explorer autonomy, the software architecture of autonomous mission management system (AMMS) is given for the deep space explorer, and the autonomous mission planning system, the kernel part of this architecture, is designed in detail. In order to describe the parallel activity, the state timeline is introduced to build the formal model of the planning system and based on this model, the temporal constraint satisfaction planning algorithm is proposed to produce the explorer’s activity sequence. With some key subsystems of the deep space explorer as examples, the autonomous mission planning simulation system is designed. The results show that this system can calculate the executable activity sequence with the given mission goals and initial state of the explorer.展开更多
More than 50 years of space exploration has not only satisfied human curiosity and built up international cooperation,but also improved life on Earth.Space exploration is an open-ended process which started 50 years a...More than 50 years of space exploration has not only satisfied human curiosity and built up international cooperation,but also improved life on Earth.Space exploration is an open-ended process which started 50 years ago.It enables access to unknown terrains with robots and humans,thereby opening new frontiers.Progress of goal deep space exploration was reviewed.China's current deep space missions are also briefly introduced.Focused on the vision and voyages for China's deep space exploration in 5 or 10 years.Like the Chinese Lunar Exploration Program(CLEP),we embark on a journey to Mars.We will spend few decades on Mars with the robotic explorers.Unlike CLEP,scientists proposed to build Moon research station by 2030.展开更多
The definition, goal and impacts of deep space exploration are summarized. After a retrospect to past deep exploration activities of human being to date, both recent deep space missions and future missions in 5 years ...The definition, goal and impacts of deep space exploration are summarized. After a retrospect to past deep exploration activities of human being to date, both recent deep space missions and future missions in 5 years are also listed. There are also brief introductions about the future strategic plans of NASA, ESA, RAKA, JAXA and ISRO. Then authors analyze some important features of global deep space exploration scheme. Key technologies of deep space exploration are also determined. The status of China deep exploration plan is introduced including CE-1 lunar orbiter, the subsequent China Lunar Exploration Program, especially proposal for the second stage of China Lunar Exploration Program, Mars exploration program of China with Russia Kuafu mission, Hard X-Ray Modulated Telescope, Space Solar Telescope. At the end, some suggestions for China future deep space exploration are made.展开更多
Deep space exploration is the term used for the exploration of the Moon and the celestial bodies or space beyond the Moon, which is an important part of human space activities. Firstly, the development of deep space e...Deep space exploration is the term used for the exploration of the Moon and the celestial bodies or space beyond the Moon, which is an important part of human space activities. Firstly, the development of deep space exploration (not including the Moon) during the last few decades is summarized. Secondly, the development trend of different space countries and regions is analyzed. Then the experience and enlightenment of deep space exploration are briefly discussed. Some suggestions for China's future deep space exploration are given in the end.展开更多
Focusing on the key scientific questions of deep space exploration which include the origin and evolution of the solar system and its planets, disastrous impact on the Earth by the solar activities and small bodies, e...Focusing on the key scientific questions of deep space exploration which include the origin and evolution of the solar system and its planets, disastrous impact on the Earth by the solar activities and small bodies, extraterrestrial life, this paper put forward a propose about the roadmap and scientific objectives of China's Deep-space Exploration before 2030.展开更多
On reviewing the characteristics of deep mineral exploration, this article elaborates on the necessity of employing quantitative prediction to reduce uncertainty. This is caused by complexity of mineral deposit format...On reviewing the characteristics of deep mineral exploration, this article elaborates on the necessity of employing quantitative prediction to reduce uncertainty. This is caused by complexity of mineral deposit formational environments and mineralization systems as increase of exploration depth and incompleteness of geo-information from limited direct observation. The authors wish to share the idea of "seeking difference" principle in addition to the "similar analogy" principle in deep mineral exploration, especially the focus is on the new ores in depth either in an area with discovered shallow mineral deposits or in new areas where there are no sufficient mineral deposit models to be compared. An on-going research project, involving Sn and Cu mineral deposit quantitative prediction in the Gejiu (个旧) area of Yunnan (云南) Province, China, was briefly introduced to demonstrate how the "three-component" (geoanomaly-mineralization diversity-mineral deposit spectrum) theory and non-linear methods series in conjunction with advanced GIS technology, can be applied in multi-scale and multi-task deep mineral prospecting and quantitative mineral resource assessment.展开更多
文摘China has successfully launched six lunar probes so far.From Chang'E-1 to Chang'E-4,they completed the circling,landing and roving exploration,of which Chang'E-4 was the first landing on the far side of the Moon in human history.Chang'E-5 was launched in December 2020,bringing back 1731 g of lunar soil samples.Through the detailed analysis of the samples,the scientists understand the history of late lunar volcanism,specifically extending lunar volcanism by about 800 million to 1 billion years,and proposed possible mechanisms.In addition,there are many new understandings of space weathering such as meteorite impacts and solar wind radiation on the Moon.China's first Mars exploration mission Tianwen-1 was successfully launched in July 2021.Through the study of scientific data,a number of important scientific achievements have been made in the topography,water environment and shallow surface structure of Mars.This paper introduces the main scientific achievements of Chang'E-4,Chang'E-5 and Tianwen-1 in the past two years,excluding technical and engineering contents.Due to the large number of articles involved,this paper only introduces part of the results.
基金Supported by National Natural Science Foundation of China (Grant No.51775141)Heilongjiang Touyan Innovation Team Program。
文摘The spacecraft for deep space exploration missions will face extreme environments,including cryogenic temperature,intense radiation,wide-range temperature variations and even the combination of conditions mentioned above.Harsh environments will lead to solder joints degradation or even failure,resulting in damage to onboard electronics.The research activities on high reliability solder joints using in extreme environments can not only reduce the use of onboard protection devices,but effectively improve the overall reliability of spacecraft,which is of great significance to the aviation industry.In this paper,we review the reliability research on SnPb solder alloys,Sn-based lead-free solder alloys and In-based solder alloys in extreme environments,and try to provide some suggestions for the follow-up studies,which focus on solder joint reliability under extreme environments.
基金Supported by Fundamental Research Funds for the Central Universities of China(Grant No.2021JBM021)National Natural Science Foundation of China(Grant Nos.52202431,52172353).
文摘The footpad structure of a deep space exploration lander is a critical system that makes the initial contact with the ground,and thereby plays a crucial role in determining the stability and energy absorption characteristics during the impact process.The conventional footpad is typically designed with an aluminum honeycomb structure that dissipates energy through plastic deformation.Nevertheless,its effectiveness in providing cushioning and energy absorption becomes significantly compromised when the structure is crushed,rendering it unusable for reusable landers in the future.This study presents a methodology for designing and evaluating structural energy absorption systems incorporating recoverable strain constraints of shape memory alloys(SMA).The topological configuration of the energy absorbing structure is derived using an equivalent static load method(ESL),and three lightweight footpad designs featuring honeycomb-like Ni-Ti shape memory alloys structures and having variable stiffness skins are proposed.To verify the accuracy of the numerical modelling,a honeycomb-like structure subjected to compression load is modeled and then compared with experimental results.Moreover,the influence of the configurations and thickness distribution of the proposed structures on their energy absorption performance is comprehensively evaluated using finite element simulations.The results demonstrate that the proposed design approach effectively regulates the strain threshold to maintain the SMA within the constraint of maximum recoverable strain,resulting in a structural energy absorption capacity of 362 J/kg with a crushing force efficiency greater than 63%.
基金supported by the China National Postdoctoral Program for Innovative Talents(No.BX201600124)China Postdoctoral Science Foundation(No.2016M600796)the National Natural Science Foundation of China(No.11605131)
文摘With the advantages of high reliability, power density, and long life, nuclear power reactors have become a promising option for space power. In this study, the Reactor Excursion and Leak Analysis Program 5(RELAP5), with the implementation of sodium–potassium eutectic alloy(NaK-78) properties and heat transfer correlations, is adopted to analyze the thermal–hydraulic characteristics of the space nuclear reactor TOPAZ-Ⅱ.A RELAP5 model including thermionic fuel elements(TFEs), reactor core, radiator, coolant loop, and volume accumulator is established. The temperature reactivity feedback effects of the fuel, TFE emitter, TFE collector,moderator, and reactivity insertion effects of the control drums and safety drums are considered. To benchmark the integrated TOPAZ-Ⅱ system model, an electrical ground test of the fully integrated TOPAZ-Ⅱ system, the V-71 unit,is simulated and analyzed. The calculated coolant temperature and system pressure are in acceptable agreement with the experimental data for the maximum relative errors of 8 and 10%, respectively. The detailed thermal–hydraulic characteristics of TOPAZ-Ⅱ are then simulated and analyzed at the steady state. The calculation results agree well with the design values. The current work provides a solid foundation for space reactor design and transient analysis in the future.
基金Supported by National Science Foundation of China(41590851)
文摘The current lunar exploration has changed from a single scientific exploration to science and resource utilization. On the basis of the previous lunar exploration, Chinese scientists and technical experts have proposed an overall plan to preliminarily build a lunar research station on the lunar South Pole by several missions before 2035, exploring of the moon, as well as the use of lunar platforms and in-site utilization of resources. In addition, China will also explore Mars, asteroids and Jupiter and its moons. This paper briefly introduces the ideas of Chinese scientists and technical experts on the lunar and deep space exploration.
基金Supported by National Key R&D Program of China(2020YFE0202100)Beijing Municipal Science and Technology Commission(Z181100002918003)。
文摘China has carried out four unmanned missions to the Moon since it launched Chang’E-1,the first lunar orbiter in 2007.With the implementation of the Chang’E-5 mission this year,the three phases of the lunar exploration program,namely orbiting,landing and returning,have been completed.In the plan of follow-up unmanned lunar exploration missions,it is planned to establish an experimental lunar research station at the lunar south pole by 2030 through the implementation of several missions,laying a foundation for the establishment of practical lunar research station in the future.China successfully launched its first Mars probe on 23 July 2020,followed in future by an asteroid mission,second Mars mission,and a mission to explore Jupiter and its moons.
基金Supported by the B-type Strategic Priority Program of the Chinese Academy of Sciences(XDB41000000)the National Natural Science Foundation of China(11773081,11573073)CAS Interdisciplinary Innovation Team,Foundation of Minor Planets of the Purple Mountain Observatory and Youth Innovation Promotion Association。
文摘Four future missions for deep space exploration and future space-based exoplanet surveys on habitable planets by 2030 are scheduled to be launched.Two Mars exploration missions are designed to investigate geological structure,the material on Martian surface,and retrieve returned samples.The asteroids and main belt comet exploration is expected to explore two objects within 10 years.The small-body mission will aim to land on the asteroid and get samples return to Earth.The basic physical characteristics of the two objects will be obtained through the mission.The exploration of Jupiter system will characterize the environment of Jupiter and the four largest Moons and understand the atmosphere of Jupiter.In addition,we further introduce two space-based exoplanet survey by 2030,Miyin Program and Closeby Habitable Exoplanet Survey(CHES Mission).Miyin program aims to detect habitable exoplanets using interferometry,while CHES mission expects to discover habitable exoplanets orbiting FGK stars within 10 pc through astrometry.The above-mentioned missions are positively to achieve breakthroughs in the field of planetary science.
文摘In order to realize the explorer autonomy, the software architecture of autonomous mission management system (AMMS) is given for the deep space explorer, and the autonomous mission planning system, the kernel part of this architecture, is designed in detail. In order to describe the parallel activity, the state timeline is introduced to build the formal model of the planning system and based on this model, the temporal constraint satisfaction planning algorithm is proposed to produce the explorer’s activity sequence. With some key subsystems of the deep space explorer as examples, the autonomous mission planning simulation system is designed. The results show that this system can calculate the executable activity sequence with the given mission goals and initial state of the explorer.
基金Supported by the Major Program of the National Natural Science Foundation of China(41590851)
文摘More than 50 years of space exploration has not only satisfied human curiosity and built up international cooperation,but also improved life on Earth.Space exploration is an open-ended process which started 50 years ago.It enables access to unknown terrains with robots and humans,thereby opening new frontiers.Progress of goal deep space exploration was reviewed.China's current deep space missions are also briefly introduced.Focused on the vision and voyages for China's deep space exploration in 5 or 10 years.Like the Chinese Lunar Exploration Program(CLEP),we embark on a journey to Mars.We will spend few decades on Mars with the robotic explorers.Unlike CLEP,scientists proposed to build Moon research station by 2030.
文摘The definition, goal and impacts of deep space exploration are summarized. After a retrospect to past deep exploration activities of human being to date, both recent deep space missions and future missions in 5 years are also listed. There are also brief introductions about the future strategic plans of NASA, ESA, RAKA, JAXA and ISRO. Then authors analyze some important features of global deep space exploration scheme. Key technologies of deep space exploration are also determined. The status of China deep exploration plan is introduced including CE-1 lunar orbiter, the subsequent China Lunar Exploration Program, especially proposal for the second stage of China Lunar Exploration Program, Mars exploration program of China with Russia Kuafu mission, Hard X-Ray Modulated Telescope, Space Solar Telescope. At the end, some suggestions for China future deep space exploration are made.
基金supported by the National Science and Technology Major Project on Lunar Exploration Program and the National High Technology Research and Development Program ("863" Program) (Grant Nos. 2010AA122206 and 2010AA7030506C)
文摘Deep space exploration is the term used for the exploration of the Moon and the celestial bodies or space beyond the Moon, which is an important part of human space activities. Firstly, the development of deep space exploration (not including the Moon) during the last few decades is summarized. Secondly, the development trend of different space countries and regions is analyzed. Then the experience and enlightenment of deep space exploration are briefly discussed. Some suggestions for China's future deep space exploration are given in the end.
文摘Focusing on the key scientific questions of deep space exploration which include the origin and evolution of the solar system and its planets, disastrous impact on the Earth by the solar activities and small bodies, extraterrestrial life, this paper put forward a propose about the roadmap and scientific objectives of China's Deep-space Exploration before 2030.
基金supported by the National High Technology Research Development Program of China (Nos. 2006AA06Z115, 2006AA06Z113)Program of Yunnan Tin Industry Group Company Ltd..
文摘On reviewing the characteristics of deep mineral exploration, this article elaborates on the necessity of employing quantitative prediction to reduce uncertainty. This is caused by complexity of mineral deposit formational environments and mineralization systems as increase of exploration depth and incompleteness of geo-information from limited direct observation. The authors wish to share the idea of "seeking difference" principle in addition to the "similar analogy" principle in deep mineral exploration, especially the focus is on the new ores in depth either in an area with discovered shallow mineral deposits or in new areas where there are no sufficient mineral deposit models to be compared. An on-going research project, involving Sn and Cu mineral deposit quantitative prediction in the Gejiu (个旧) area of Yunnan (云南) Province, China, was briefly introduced to demonstrate how the "three-component" (geoanomaly-mineralization diversity-mineral deposit spectrum) theory and non-linear methods series in conjunction with advanced GIS technology, can be applied in multi-scale and multi-task deep mineral prospecting and quantitative mineral resource assessment.