Vector control schemes have recently been used to drive linear induction motors(LIM)in high-performance applications.This trend promotes the development of precise and efficient control schemes for individual motors.T...Vector control schemes have recently been used to drive linear induction motors(LIM)in high-performance applications.This trend promotes the development of precise and efficient control schemes for individual motors.This research aims to present a novel framework for speed and thrust force control of LIM using space vector pulse width modulation(SVPWM)inverters.The framework under consideration is developed in four stages.To begin,MATLAB Simulink was used to develop a detailed mathematical and electromechanical dynamicmodel.The research presents a modified SVPWM inverter control scheme.By tuning the proportional-integral(PI)controller with a transfer function,optimized values for the PI controller are derived.All the subsystems mentioned above are integrated to create a robust simulation of the LIM’s precise speed and thrust force control scheme.The reference speed values were chosen to evaluate the performance of the respective system,and the developed system’s response was verified using various data sets.For the low-speed range,a reference value of 10m/s is used,while a reference value of 100 m/s is used for the high-speed range.The speed output response indicates that themotor reached reference speed in amatter of seconds,as the delay time is between 8 and 10 s.The maximum amplitude of thrust achieved is less than 400N,demonstrating the controller’s capability to control a high-speed LIM with minimal thrust ripple.Due to the controlled speed range,the developed system is highly recommended for low-speed and high-speed and heavy-duty traction applications.展开更多
In order to compensate for the deficiency of Sine Pulse Width Modulation(SPWM), on the base of analyzing the principle of space w tot pulse width modulation and being compared with SPWM, the method of solving workin...In order to compensate for the deficiency of Sine Pulse Width Modulation(SPWM), on the base of analyzing the principle of space w tot pulse width modulation and being compared with SPWM, the method of solving working time of adjacent vector and the method of generate space voltage vector were introduced. The experiment to the inverter which consists of IGBT proves that SVPWM centrol algorithm can reduce harmonic effectively, it is beneficial to enhancing the utilization rate of voltage source inverter direct current power supply.展开更多
Parallel converter can significantly increase the capacity of the converter and improve the power quality of AC side, but the circulation which can lead to high switching loss and even damage the devices will easily e...Parallel converter can significantly increase the capacity of the converter and improve the power quality of AC side, but the circulation which can lead to high switching loss and even damage the devices will easily exist in the direct parallel converters. In this paper, the average model of parallel interleaved inverters system to analyze the circulation current is shown, and the cross current is relevant to DC-bus voltage and the overlap time of zero vectors in the switching period. Based on this observation, a discontinuous space vector modulation without using zero vectors (000) is eliminate and suppress the zero-sequence current to entire system. Finally, the effectiveness of modulation strategy is verified by the simulations in this paper.展开更多
Direct torque control (DTC) of Switched reluctance motor is known straightforward control structure with similar execution to that of field situated control strategies. In any case, the part of ideal determination of ...Direct torque control (DTC) of Switched reluctance motor is known straightforward control structure with similar execution to that of field situated control strategies. In any case, the part of ideal determination of the voltage space vector is one of the weakest focuses in a routine DTC drive because of adjustable switching frequency and high torque ripple. In this paper, ideal choice of voltage space vectors is accomplished utilizing ANFIS (Adaptive Neuro Fuzzy Inference System) with space vector Modulation. SVM-DTC gives consistent switching frequency and the proposed ANFIS controller’s structure manages the torque and stator flux error signals through the fuzzy deduction to get a yield that takes the type of space voltage vector. Simulation results accept the proposed evolutionary system with quick torque and flux reaction with minimized torque ripple and flux ripple.展开更多
Power Quality (PQ) combined disturbances become common along with ubiquity of voltage flickers and harmonics. This paper presents a novel approach to classify the different patterns of PQ combined disturbances. The cl...Power Quality (PQ) combined disturbances become common along with ubiquity of voltage flickers and harmonics. This paper presents a novel approach to classify the different patterns of PQ combined disturbances. The classification system consists of two parts, namely the feature extraction and the automatic recognition. In the feature extraction stage, Phase Space Reconstruction (PSR), a time series analysis tool, is utilized to construct disturbance signal trajectories. For these trajectories, several indices are proposed to form the feature vectors. Support Vector Machines (SVMs) are then implemented to recognize the different patterns and to evaluate the efficiencies. The types of disturbances discussed include a combination of short-term dis-turbances (voltage sags, swells) and long-term disturbances (flickers, harmonics), as well as their homologous single ones. The feasibilities of the proposed approach are verified by simulation with thousands of PQ events. Comparison studies based on Wavelet Transform (WT) and Artificial Neural Network (ANN) are also reported to show its advantages.展开更多
This paper presents frequency domain method for harmonic analysis of space vector based STATCOM. Space Vector Pulse Width Modulation (SVPWM) method is an advanced PWM method. It is a best method among all the PWM tech...This paper presents frequency domain method for harmonic analysis of space vector based STATCOM. Space Vector Pulse Width Modulation (SVPWM) method is an advanced PWM method. It is a best method among all the PWM techniques. It provides a freedom in a switching cycle for placement space vector. In this paper, the SVPWM is used for switching of STATCOM. The harmonic (or frequency) domain is a steady-state form of harmonic analysis method, which represents converters to their harmonic spectra. This paper presents harmonic analysis by means of harmonic domain for space vector based Static shunt converter (STATCOM). Performance of the STATCOM is evaluated in harmonic domain simulation studies in MATLAB environment.展开更多
This paper presents analytical frequency domain method for harmonic modeling and evaluation of Space Vector Pulse Width Modulation (SVPWM) based static synchronous series converter (SSSC). SVPWM is the best among all ...This paper presents analytical frequency domain method for harmonic modeling and evaluation of Space Vector Pulse Width Modulation (SVPWM) based static synchronous series converter (SSSC). SVPWM is the best among all the PWM techniques. It gives a degree of freedom of space vector placement in a switching cycle. Dynamic modeling technique is used for space vector modulation (SVM) based voltage source converter that is adapted as a static synchronous series converter (SSSC) for harmonic analysis using dynamic harmonic domain. Performance of the SSSC is evaluated in dynamic harmonic domain simulation studies in MATLAB environment. The switching function spectra are necessary for harmonic transfer matrix which is calculated using Fourier series. This paper presents the analysis of harmonics for space vector based SSSC during steady state and dynamic condition.展开更多
With the acceleration of agricultural electrification,a lot of nonlinear and shock loads appear in the rural power grid,and the resulting harmonic and reactive currents pollute the rural power grid more and more serio...With the acceleration of agricultural electrification,a lot of nonlinear and shock loads appear in the rural power grid,and the resulting harmonic and reactive currents pollute the rural power grid more and more seriously.To solve the above problem,three-level neutral point clamped(NPC)inverters have been widely used,but their development is greatly restricted by the defect of neutral point voltage imbalance.In this paper,an improved virtual space vector pulse width modulation(VSVPWM)was proposed.Firstly,the mathematical models of various space vectors were established,and the influence of various space vectors on neutral point voltage was analyzed.The sum of the vector current at the neutral point was zero and the voltage control at the neutral point was completed by.introducing the time offset into different switching times of the redundant small vector.This method was simple in design and avoided the redundant calculation of the traditional VSVPWM method and tedious switch sequence design.This balancing control strategy could greatly reduce the influence of virtual vectors on neutral point voltage and effectively control the low-frequency oscillation of neutral point voltage.The validity of the method was verified by establishing a matlab simulation model.展开更多
In this paper, an improved hybrid space vector pulse width modulation (HSVPWM) technique is proposed for IM (induction motor) drives. The basic principle involved in the proposed random pulse width modulation (RPWM) c...In this paper, an improved hybrid space vector pulse width modulation (HSVPWM) technique is proposed for IM (induction motor) drives. The basic principle involved in the proposed random pulse width modulation (RPWM) cuddled SVPWM is amalgamating the pre-calculated switching timings for various sections of hexagonal space vector boundary and the random selection of carrier between two triangular signals, in order to disband acoustic switching noise spectrum with improved fundamental component. The arbitrary selection between triangular carriers, which is decided by digital signal states (Low or High) of the linear feedback shift register (LFSR) based pseudo random binary sequence (PRBS) generator. The SVPWM offers a control degree of freedom in terms of positioning of vectors inside every sampling interval and hence it has six possible variants of the voltage vectors arrangements in each sector. The developed HSVPWM is thoroughly analyzed in using the MATLAB? based simulation for all SVPWM variants. From the simulation and experimental results viz. harmonic spectrum, harmonic spread factor (HSF), total harmonic distortion (THD) etc., and the superiority of the proposed scheme such as better utilization of DC bus and the randomization of the harmonic power are evidenced. For the practical implementation, Xilinx XC3S500E FPGA device has been used.展开更多
基金The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University for funding this work through Large Groups Project under grant number(RGP.2/111/43).
文摘Vector control schemes have recently been used to drive linear induction motors(LIM)in high-performance applications.This trend promotes the development of precise and efficient control schemes for individual motors.This research aims to present a novel framework for speed and thrust force control of LIM using space vector pulse width modulation(SVPWM)inverters.The framework under consideration is developed in four stages.To begin,MATLAB Simulink was used to develop a detailed mathematical and electromechanical dynamicmodel.The research presents a modified SVPWM inverter control scheme.By tuning the proportional-integral(PI)controller with a transfer function,optimized values for the PI controller are derived.All the subsystems mentioned above are integrated to create a robust simulation of the LIM’s precise speed and thrust force control scheme.The reference speed values were chosen to evaluate the performance of the respective system,and the developed system’s response was verified using various data sets.For the low-speed range,a reference value of 10m/s is used,while a reference value of 100 m/s is used for the high-speed range.The speed output response indicates that themotor reached reference speed in amatter of seconds,as the delay time is between 8 and 10 s.The maximum amplitude of thrust achieved is less than 400N,demonstrating the controller’s capability to control a high-speed LIM with minimal thrust ripple.Due to the controlled speed range,the developed system is highly recommended for low-speed and high-speed and heavy-duty traction applications.
文摘In order to compensate for the deficiency of Sine Pulse Width Modulation(SPWM), on the base of analyzing the principle of space w tot pulse width modulation and being compared with SPWM, the method of solving working time of adjacent vector and the method of generate space voltage vector were introduced. The experiment to the inverter which consists of IGBT proves that SVPWM centrol algorithm can reduce harmonic effectively, it is beneficial to enhancing the utilization rate of voltage source inverter direct current power supply.
文摘Parallel converter can significantly increase the capacity of the converter and improve the power quality of AC side, but the circulation which can lead to high switching loss and even damage the devices will easily exist in the direct parallel converters. In this paper, the average model of parallel interleaved inverters system to analyze the circulation current is shown, and the cross current is relevant to DC-bus voltage and the overlap time of zero vectors in the switching period. Based on this observation, a discontinuous space vector modulation without using zero vectors (000) is eliminate and suppress the zero-sequence current to entire system. Finally, the effectiveness of modulation strategy is verified by the simulations in this paper.
文摘Direct torque control (DTC) of Switched reluctance motor is known straightforward control structure with similar execution to that of field situated control strategies. In any case, the part of ideal determination of the voltage space vector is one of the weakest focuses in a routine DTC drive because of adjustable switching frequency and high torque ripple. In this paper, ideal choice of voltage space vectors is accomplished utilizing ANFIS (Adaptive Neuro Fuzzy Inference System) with space vector Modulation. SVM-DTC gives consistent switching frequency and the proposed ANFIS controller’s structure manages the torque and stator flux error signals through the fuzzy deduction to get a yield that takes the type of space voltage vector. Simulation results accept the proposed evolutionary system with quick torque and flux reaction with minimized torque ripple and flux ripple.
基金Project (No. 50437010) supported by the Key Program of the Na-tional Natural Science Foundation of China
文摘Power Quality (PQ) combined disturbances become common along with ubiquity of voltage flickers and harmonics. This paper presents a novel approach to classify the different patterns of PQ combined disturbances. The classification system consists of two parts, namely the feature extraction and the automatic recognition. In the feature extraction stage, Phase Space Reconstruction (PSR), a time series analysis tool, is utilized to construct disturbance signal trajectories. For these trajectories, several indices are proposed to form the feature vectors. Support Vector Machines (SVMs) are then implemented to recognize the different patterns and to evaluate the efficiencies. The types of disturbances discussed include a combination of short-term dis-turbances (voltage sags, swells) and long-term disturbances (flickers, harmonics), as well as their homologous single ones. The feasibilities of the proposed approach are verified by simulation with thousands of PQ events. Comparison studies based on Wavelet Transform (WT) and Artificial Neural Network (ANN) are also reported to show its advantages.
文摘This paper presents frequency domain method for harmonic analysis of space vector based STATCOM. Space Vector Pulse Width Modulation (SVPWM) method is an advanced PWM method. It is a best method among all the PWM techniques. It provides a freedom in a switching cycle for placement space vector. In this paper, the SVPWM is used for switching of STATCOM. The harmonic (or frequency) domain is a steady-state form of harmonic analysis method, which represents converters to their harmonic spectra. This paper presents harmonic analysis by means of harmonic domain for space vector based Static shunt converter (STATCOM). Performance of the STATCOM is evaluated in harmonic domain simulation studies in MATLAB environment.
文摘This paper presents analytical frequency domain method for harmonic modeling and evaluation of Space Vector Pulse Width Modulation (SVPWM) based static synchronous series converter (SSSC). SVPWM is the best among all the PWM techniques. It gives a degree of freedom of space vector placement in a switching cycle. Dynamic modeling technique is used for space vector modulation (SVM) based voltage source converter that is adapted as a static synchronous series converter (SSSC) for harmonic analysis using dynamic harmonic domain. Performance of the SSSC is evaluated in dynamic harmonic domain simulation studies in MATLAB environment. The switching function spectra are necessary for harmonic transfer matrix which is calculated using Fourier series. This paper presents the analysis of harmonics for space vector based SSSC during steady state and dynamic condition.
基金Supported by Application Technology Research and Development of Harbin City(2017RAXXJ075)。
文摘With the acceleration of agricultural electrification,a lot of nonlinear and shock loads appear in the rural power grid,and the resulting harmonic and reactive currents pollute the rural power grid more and more seriously.To solve the above problem,three-level neutral point clamped(NPC)inverters have been widely used,but their development is greatly restricted by the defect of neutral point voltage imbalance.In this paper,an improved virtual space vector pulse width modulation(VSVPWM)was proposed.Firstly,the mathematical models of various space vectors were established,and the influence of various space vectors on neutral point voltage was analyzed.The sum of the vector current at the neutral point was zero and the voltage control at the neutral point was completed by.introducing the time offset into different switching times of the redundant small vector.This method was simple in design and avoided the redundant calculation of the traditional VSVPWM method and tedious switch sequence design.This balancing control strategy could greatly reduce the influence of virtual vectors on neutral point voltage and effectively control the low-frequency oscillation of neutral point voltage.The validity of the method was verified by establishing a matlab simulation model.
文摘In this paper, an improved hybrid space vector pulse width modulation (HSVPWM) technique is proposed for IM (induction motor) drives. The basic principle involved in the proposed random pulse width modulation (RPWM) cuddled SVPWM is amalgamating the pre-calculated switching timings for various sections of hexagonal space vector boundary and the random selection of carrier between two triangular signals, in order to disband acoustic switching noise spectrum with improved fundamental component. The arbitrary selection between triangular carriers, which is decided by digital signal states (Low or High) of the linear feedback shift register (LFSR) based pseudo random binary sequence (PRBS) generator. The SVPWM offers a control degree of freedom in terms of positioning of vectors inside every sampling interval and hence it has six possible variants of the voltage vectors arrangements in each sector. The developed HSVPWM is thoroughly analyzed in using the MATLAB? based simulation for all SVPWM variants. From the simulation and experimental results viz. harmonic spectrum, harmonic spread factor (HSF), total harmonic distortion (THD) etc., and the superiority of the proposed scheme such as better utilization of DC bus and the randomization of the harmonic power are evidenced. For the practical implementation, Xilinx XC3S500E FPGA device has been used.