The dynamic optimal interpolation(DOI)method is a technique based on quasi-geostrophic dynamics for merging multi-satellite altimeter along-track observations to generate gridded absolute dynamic topography(ADT).Compa...The dynamic optimal interpolation(DOI)method is a technique based on quasi-geostrophic dynamics for merging multi-satellite altimeter along-track observations to generate gridded absolute dynamic topography(ADT).Compared with the linear optimal interpolation(LOI)method,the DOI method can improve the accuracy of gridded ADT locally but with low computational efficiency.Consequently,considering both computational efficiency and accuracy,the DOI method is more suitable to be used only for regional applications.In this study,we propose to evaluate the suitable region for applying the DOI method based on the correlation between the absolute value of the Jacobian operator of the geostrophic stream function and the improvement achieved by the DOI method.After verifying the LOI and DOI methods,the suitable region was investigated in three typical areas:the Gulf Stream(25°N-50°N,55°W-80°W),the Japanese Kuroshio(25°N-45°N,135°E-155°E),and the South China Sea(5°N-25°N,100°E-125°E).We propose to use the DOI method only in regions outside the equatorial region and where the absolute value of the Jacobian operator of the geostrophic stream function is higher than1×10^(-11).展开更多
In this paper,we mainly discuss a discrete estimation of the average differential entropy for a continuous time-stationary ergodic space-time random field.By estimating the probability value of a time-stationary rando...In this paper,we mainly discuss a discrete estimation of the average differential entropy for a continuous time-stationary ergodic space-time random field.By estimating the probability value of a time-stationary random field in a small range,we give an entropy estimation and obtain the average entropy estimation formula in a certain bounded space region.It can be proven that the estimation of the average differential entropy converges to the theoretical value with a probability of 1.In addition,we also conducted numerical experiments for different parameters to verify the convergence result obtained in the theoretical proofs.展开更多
Missing value is one of the main factors that cause dirty data.Without high-quality data,there will be no reliable analysis results and precise decision-making.Therefore,the data warehouse needs to integrate high-qual...Missing value is one of the main factors that cause dirty data.Without high-quality data,there will be no reliable analysis results and precise decision-making.Therefore,the data warehouse needs to integrate high-quality data consistently.In the power system,the electricity consumption data of some large users cannot be normally collected resulting in missing data,which affects the calculation of power supply and eventually leads to a large error in the daily power line loss rate.For the problem of missing electricity consumption data,this study proposes a group method of data handling(GMDH)based data interpolation method in distribution power networks and applies it in the analysis of actually collected electricity data.First,the dependent and independent variables are defined from the original data,and the upper and lower limits of missing values are determined according to prior knowledge or existing data information.All missing data are randomly interpolated within the upper and lower limits.Then,the GMDH network is established to obtain the optimal complexity model,which is used to predict the missing data to replace the last imputed electricity consumption data.At last,this process is implemented iteratively until the missing values do not change.Under a relatively small noise level(α=0.25),the proposed approach achieves a maximum error of no more than 0.605%.Experimental findings demonstrate the efficacy and feasibility of the proposed approach,which realizes the transformation from incomplete data to complete data.Also,this proposed data interpolation approach provides a strong basis for the electricity theft diagnosis and metering fault analysis of electricity enterprises.展开更多
As a branch of quantum image processing,quantum image scaling has been widely studied.However,most of the existing quantum image scaling algorithms are based on nearest-neighbor interpolation and bilinear interpolatio...As a branch of quantum image processing,quantum image scaling has been widely studied.However,most of the existing quantum image scaling algorithms are based on nearest-neighbor interpolation and bilinear interpolation,the quantum version of bicubic interpolation has not yet been studied.In this work,we present the first quantum image scaling scheme for bicubic interpolation based on the novel enhanced quantum representation(NEQR).Our scheme can realize synchronous enlargement and reduction of the image with the size of 2^(n)×2^(n) by integral multiple.Firstly,the image is represented by NEQR and the original image coordinates are obtained through multiple CNOT modules.Then,16 neighborhood pixels are obtained by quantum operation circuits,and the corresponding weights of these pixels are calculated by quantum arithmetic modules.Finally,a quantum matrix operation,instead of a classical convolution operation,is used to realize the sum of convolution of these pixels.Through simulation experiments and complexity analysis,we demonstrate that our scheme achieves exponential speedup over the classical bicubic interpolation algorithm,and has better effect than the quantum version of bilinear interpolation.展开更多
Underwater monopulse space-time adaptive track-before-detect method,which combines space-time adaptive detector(STAD)and the track-before-detect algorithm based on dynamic programming(DP-TBD),denoted as STAD-DP-TBD,ca...Underwater monopulse space-time adaptive track-before-detect method,which combines space-time adaptive detector(STAD)and the track-before-detect algorithm based on dynamic programming(DP-TBD),denoted as STAD-DP-TBD,can effectively detect low-speed weak targets.However,due to the complexity and variability of the underwater environment,it is difficult to obtain sufficient secondary data,resulting in a serious decline in the detection and tracking performance,and leading to poor robustness of the algorithm.In this paper,based on the adaptive matched filter(AMF)test and the RAO test,underwater monopulse AMF-DP-TBD algorithm and RAO-DP-TBD algorithm which incorporate persymmetry and symmetric spectrum,denoted as PSAMF-DP-TBD and PS-RAO-DP-TBD,are proposed and compared with the AMF-DP-TBD algorithm and RAO-DP-TBD algorithm based on persymmetry array,denoted as P-AMF-DP-TBD and P-RAO-DP-TBD.The simulation results show that the four methods can work normally with sufficient secondary data and slightly insufficient secondary data,but when the secondary data is severely insufficient,the P-AMF-DP-TBD and P-RAO-DP-TBD algorithms has failed while the PSAMF-DP-TBD and PS-RAO-DP-TBD algorithms still have good detection and tracking capabilities.展开更多
In this study,a wavelet multi-resolution interpolation Galerkin method(WMIGM)is proposed to solve linear singularly perturbed boundary value problems.Unlike conventional wavelet schemes,the proposed algorithm can be r...In this study,a wavelet multi-resolution interpolation Galerkin method(WMIGM)is proposed to solve linear singularly perturbed boundary value problems.Unlike conventional wavelet schemes,the proposed algorithm can be readily extended to special node generation techniques,such as the Shishkin node.Such a wavelet method allows a high degree of local refinement of the nodal distribution to efficiently capture localized steep gradients.All the shape functions possess the Kronecker delta property,making the imposition of boundary conditions as easy as that in the finite element method.Four numerical examples are studied to demonstrate the validity and accuracy of the proposedwavelet method.The results showthat the use ofmodified Shishkin nodes can significantly reduce numerical oscillation near the boundary layer.Compared with many other methods,the proposed method possesses satisfactory accuracy and efficiency.The theoretical and numerical results demonstrate that the order of theε-uniform convergence of this wavelet method can reach 5.展开更多
The accuracy of interpolation models applied to groundwater depends, among other factors, on the interpolation method chosen. Therefore, it is necessary to compare different approaches. For this, different methods of ...The accuracy of interpolation models applied to groundwater depends, among other factors, on the interpolation method chosen. Therefore, it is necessary to compare different approaches. For this, different methods of interpolation of nitrate concentrations were contrasted in sixty-seven wells in an aquifer in Aguascalientes, Mexico. Four general interpolation methods were used in ArcGIS 10.5 to make the maps: IDW, Kriging, Natural Neighbor and Spline. In the modeling, only method type was varied. The input parameters (location, temporality, and nitrate concentration) were the same in the four interpolations;despite this, different maximum and minimum values were obtained for each interpolation method: for IDW, 0.2 to 22.0 mg/l, for Kriging, 3.5 to 16.5 mg/l, for Natural Neighbor, 0.3 to 21.7 mg/l and for Spline −30.8 to 37.2 mg/l. Finally, an assessment of the maps obtained was conducted by comparing them with the Official Mexican Standard (OMS), where 24 of the 67 wells were found outside the 10 mg/l that the OMS establishes as maximum permissible limit for human consumption. Taking as a starting point the measured values of nitrates (0.25 to 22.12 mg/l), as well as the spatial distribution of the interpolated values, it was determined that the Krigging method best fitted the data measured in the wells within the studied aquifer.展开更多
The purpose of this paper is to investigate the spatial interpolation of rainfall variability with deterministic and geostatic inspections in the Prefecture of Kilkis (Greece). The precipitation data where recorded fr...The purpose of this paper is to investigate the spatial interpolation of rainfall variability with deterministic and geostatic inspections in the Prefecture of Kilkis (Greece). The precipitation data where recorded from 12 meteorological stations in the Prefecture of Kilkis for 36 hydrological years (1973-2008). The cumulative monthly values of rainfall were studied on an annual and seasonal basis as well as during the arid-dry season. In the deterministic tests, the I.D.W. and R.B.F. checks were inspected, while in the geostatic tests, Ordinary Kriging and Universal Kriging respectively. The selection of the optimum method was made based on the least Root Mean Square Error (R.M.S.E.), as well as on the Mean Error (M.E.), as assessed by the cross validation analysis. The geostatical Kriging also considered the impact of isotropy and anisotropy across all time periods of data collection. Moreover, for Universal Kriging, the study explored spherical, exponential and Gaussian models in various combinations. Geostatistical techniques consistently demonstrated greater reliability than deterministic techniques across all time periods of data collection. Specifically, during the annual period, anisotropy was the prevailing characteristic in geostatistical techniques. Moreover, the results for the irrigation and seasonal periods were generally comparable, with few exceptions where isotropic methods yielded lower (R.M.S.E.) in some seasonal observations.展开更多
This paper presents a physically plausible and somewhat illuminating first step in extending the fundamental principles of mechanical stress and strain to space-time. Here the geometry of space-time, encoded in the me...This paper presents a physically plausible and somewhat illuminating first step in extending the fundamental principles of mechanical stress and strain to space-time. Here the geometry of space-time, encoded in the metric tensor, is considered to be made up of a dynamic lattice of extremely small, localized fields that form a perfectly elastic Lorentz symmetric space-time at the global (macroscopic) scale. This theoretical model of space-time at the Planck scale leads to a somewhat surprising result in which matter waves in curved space-time radiate thermal gravitational energy, as well as an equally intriguing relationship for the anomalous dispersion of light in a gravitational field.展开更多
The emerging virtual coupling technology aims to operate multiple train units in a Virtually Coupled Train Set(VCTS)at a minimal but safe distance.To guarantee collision avoidance,the safety distance should be calcula...The emerging virtual coupling technology aims to operate multiple train units in a Virtually Coupled Train Set(VCTS)at a minimal but safe distance.To guarantee collision avoidance,the safety distance should be calculated using the state-of-the-art space-time separation principle that separates the Emergency Braking(EB)trajectories of two successive units during the whole EB process.In this case,the minimal safety distance is usually numerically calculated without an analytic formulation.Thus,the constrained VCTS control problem is hard to address with space-time separation,which is still a gap in the existing literature.To solve this problem,we propose a Distributed Economic Model Predictive Control(DEMPC)approach with computation efficiency and theoretical guarantee.Specifically,to alleviate the computation burden,we transform implicit safety constraints into explicitly linear ones,such that the optimal control problem in DEMPC is a quadratic programming problem that can be solved efficiently.For theoretical analysis,sufficient conditions are derived to guarantee the recursive feasibility and stability of DEMPC,employing compatibility constraints,tube techniques and terminal ingredient tuning.Moreover,we extend our approach with globally optimal and distributed online EB configuration methods to shorten the minimal distance among VCTS.Finally,experimental results demonstrate the performance and advantages of the proposed approaches.展开更多
In various environmental studies, geoscience variables not only have the characteristics of time and space, but also are influenced by other variables. Multivariate spatiotemporal variables can improve the accuracy of...In various environmental studies, geoscience variables not only have the characteristics of time and space, but also are influenced by other variables. Multivariate spatiotemporal variables can improve the accuracy of spatiotemporal estimation. Taking the monthly mean ground observation data of the period 1960–2013 precipitation in the Xinjiang Uygur Autonomous Region, China, the spatiotemporal distribution from January to December in 2013 was respectively estimated by space-time Kriging and space-time CoKriging. Modeling spatiotemporal direct variograms and a cross variogram was a key step in space-time CoKriging. Taking the monthly mean air relative humidity of the same site at the same time as the covariates, the spatiotemporal direct variograms and the spatiotemporal cross variogram of the monthly mean precipitation for the period 1960–2013 were modeled. The experimental results show that the space-time CoKriging reduces the mean square error by 31.46% compared with the space-time ordinary Kriging. The correlation coefficient between the estimated values and the observed values of the space-time CoKriging is 5.07% higher than the one of the space-time ordinary Kriging. Therefore, a space-time CoKriging interpolation with air humidity as a covariate improves the interpolation accuracy.展开更多
As a part of quantum image processing, quantum image scaling is a significant technology for the development of quantum computation. At present, most of the quantum image scaling schemes are based on grayscale images,...As a part of quantum image processing, quantum image scaling is a significant technology for the development of quantum computation. At present, most of the quantum image scaling schemes are based on grayscale images, with relatively little processing for color images. This paper proposes a quantum color image scaling scheme based on bilinear interpolation, which realizes the 2^(n_(1)) × 2^(n_(2)) quantum color image scaling. Firstly, the improved novel quantum representation of color digital images(INCQI) is employed to represent a 2^(n_(1)) × 2^(n_(2)) quantum color image, and the bilinear interpolation method for calculating pixel values of the interpolated image is presented. Then the quantum color image scaling-up and scaling-down circuits are designed by utilizing a series of quantum modules, and the complexity of the circuits is analyzed.Finally, the experimental simulation results of MATLAB based on the classical computer are given. The ultimate results demonstrate that the complexities of the scaling-up and scaling-down schemes are quadratic and linear, respectively, which are much lower than the cubic function and exponential function of other bilinear interpolation schemes.展开更多
This paper investigates the optimal Birkhoff interpolation and Birkhoff numbers of some function spaces in space L∞[-1,1]and weighted spaces Lp,ω[-1,1],1≤p<∞,with w being a continuous integrable weight function...This paper investigates the optimal Birkhoff interpolation and Birkhoff numbers of some function spaces in space L∞[-1,1]and weighted spaces Lp,ω[-1,1],1≤p<∞,with w being a continuous integrable weight function in(-1,1).We proved that the Lagrange interpolation algorithms based on the zeros of some polynomials are optimal.We also show that the Lagrange interpolation algorithms based on the zeros of some polynomials are optimal when the function values of the two endpoints are included in the interpolation systems.展开更多
Randomness and fluctuations in wind power output may cause changes in important parameters(e.g.,grid frequency and voltage),which in turn affect the stable operation of a power system.However,owing to external factors...Randomness and fluctuations in wind power output may cause changes in important parameters(e.g.,grid frequency and voltage),which in turn affect the stable operation of a power system.However,owing to external factors(such as weather),there are often various anomalies in wind power data,such as missing numerical values and unreasonable data.This significantly affects the accuracy of wind power generation predictions and operational decisions.Therefore,developing and applying reliable wind power interpolation methods is important for promoting the sustainable development of the wind power industry.In this study,the causes of abnormal data in wind power generation were first analyzed from a practical perspective.Second,an improved complete ensemble empirical mode decomposition with adaptive noise(ICEEMDAN)method with a generative adversarial interpolation network(GAIN)network was proposed to preprocess wind power generation and interpolate missing wind power generation sub-components.Finally,a complete wind power generation time series was reconstructed.Compared to traditional methods,the proposed ICEEMDAN-GAIN combination interpolation model has a higher interpolation accuracy and can effectively reduce the error impact caused by wind power generation sequence fluctuations.展开更多
This paper presents an extension of certain forms of the real Paley-Wiener theorems to the Minkowski space-time algebra. Our emphasis is dedicated to determining the space-time valued functions whose space-time Fourie...This paper presents an extension of certain forms of the real Paley-Wiener theorems to the Minkowski space-time algebra. Our emphasis is dedicated to determining the space-time valued functions whose space-time Fourier transforms(SFT) have compact support using the partial derivatives operator and the Dirac operator of higher order.展开更多
We consider the two-point,two-time(space-time)correlation of passive scalar R(r,τ)in the Kraichnan model under the assumption of homogeneity and isotropy.Using the fine-gird PDF method,we find that R(r,τ)satisfies a...We consider the two-point,two-time(space-time)correlation of passive scalar R(r,τ)in the Kraichnan model under the assumption of homogeneity and isotropy.Using the fine-gird PDF method,we find that R(r,τ)satisfies a diffusion equation with constant diffusion coefficient determined by velocity variance and molecular diffusion.Itssolution can be expressed in terms of the two-point,one time correlation of passive scalar,i.e.,R(r,0).Moreover,the decorrelation o R(k,τ),which is the Fourier transform of R(r,τ),is determined byR(k,0)and a diffusion kernal.展开更多
High-resolution underwater digital elevation models(DEMs)are important for water and soil conservation,hydrological analysis,and river channel dredging.In this work,the underwater topography of the Panjing River in Sh...High-resolution underwater digital elevation models(DEMs)are important for water and soil conservation,hydrological analysis,and river channel dredging.In this work,the underwater topography of the Panjing River in Shanghai,China,was measured by an unmanned surface vessel.Five different interpolation methods were used to generate the underwater DEM and their precision and applicability for different underwater landforms were analyzed through cross-validation.The results showed that there was a positive correlation between the interpolation error and the terrain surface roughness.The five interpolation methods were all appropriate for the survey area,but their accuracy varied with different surface roughness.Based on the analysis results,an integrated approach was proposed to automatically select the appropriate interpolation method according to the different surface roughness in the surveying area.This approach improved the overall interpolation precision.The suggested technique provides a reference for the selection of interpolationmethods for underwater DEMdata.展开更多
In this paper, a general family of derivative-free n + 1-point iterative methods using n + 1 evaluations of the function and a general family of n-point iterative methods using n evaluations of the function and only o...In this paper, a general family of derivative-free n + 1-point iterative methods using n + 1 evaluations of the function and a general family of n-point iterative methods using n evaluations of the function and only one evaluation of its derivative are constructed by the inverse interpolation with the memory on the previous step for solving the simple root of a nonlinear equation. The order and order of convergence of them are proved respectively. Finally, the proposed methods and the basins of attraction are demonstrated by the numerical examples.展开更多
We have recently published a series of papers on a theory we call collision space-time, that seems to unify gravity and quantum mechanics. In this theory, mass and energy are redefined. We have not so far demonstrated...We have recently published a series of papers on a theory we call collision space-time, that seems to unify gravity and quantum mechanics. In this theory, mass and energy are redefined. We have not so far demonstrated how to make it compatible with electric properties such as charge and the Coulomb force. The aim of this paper is to show how electric properties can be reformulated to make it consistent with collision space-time. It is shown that we need to incorporate the Planck scale into the electric constants to do so. This is also fully possible from a practical point of view, as it has recently been shown how to measure the Planck length independent of other constants and without the need for dimensional analysis.展开更多
It is well-known that interpolation by rational functions results in a more accurate approximation than the polynomials interpolation.However,classical rational interpolation has some deficiencies such as uncontrollab...It is well-known that interpolation by rational functions results in a more accurate approximation than the polynomials interpolation.However,classical rational interpolation has some deficiencies such as uncontrollable poles and low convergence order.In contrast with the classical rational interpolants,the generalized barycentric rational interpolants which depend linearly on the interpolated values,yield infinite smooth approximation with no poles in real numbers.In this paper,a numerical collocation approach,based on the generalized barycentric rational interpolation and Gaussian quadrature formula,was introduced to approximate the solution of Volterra-Fredholm integral equations.Three types of points in the solution domain are used as interpolation nodes.The obtained numerical results confirm that the barycentric rational interpolants are efficient tools for solving Volterra-Fredholm integral equations.Moreover,integral equations with Runge’s function as an exact solution,no oscillation occurrs in the obtained approximate solutions so that the Runge’s phenomenon is avoided.展开更多
基金supported by National Natural Science Foundation of China under Grants 42192531 and 42192534the Special Fund of Hubei Luojia Laboratory(China)under Grant 220100001the Natural Science Foundation of Hubei Province for Distinguished Young Scholars(China)under Grant 2022CFA090。
文摘The dynamic optimal interpolation(DOI)method is a technique based on quasi-geostrophic dynamics for merging multi-satellite altimeter along-track observations to generate gridded absolute dynamic topography(ADT).Compared with the linear optimal interpolation(LOI)method,the DOI method can improve the accuracy of gridded ADT locally but with low computational efficiency.Consequently,considering both computational efficiency and accuracy,the DOI method is more suitable to be used only for regional applications.In this study,we propose to evaluate the suitable region for applying the DOI method based on the correlation between the absolute value of the Jacobian operator of the geostrophic stream function and the improvement achieved by the DOI method.After verifying the LOI and DOI methods,the suitable region was investigated in three typical areas:the Gulf Stream(25°N-50°N,55°W-80°W),the Japanese Kuroshio(25°N-45°N,135°E-155°E),and the South China Sea(5°N-25°N,100°E-125°E).We propose to use the DOI method only in regions outside the equatorial region and where the absolute value of the Jacobian operator of the geostrophic stream function is higher than1×10^(-11).
基金supported by the Shenzhen sustainable development project:KCXFZ 20201221173013036 and the National Natural Science Foundation of China(91746107).
文摘In this paper,we mainly discuss a discrete estimation of the average differential entropy for a continuous time-stationary ergodic space-time random field.By estimating the probability value of a time-stationary random field in a small range,we give an entropy estimation and obtain the average entropy estimation formula in a certain bounded space region.It can be proven that the estimation of the average differential entropy converges to the theoretical value with a probability of 1.In addition,we also conducted numerical experiments for different parameters to verify the convergence result obtained in the theoretical proofs.
基金This research was funded by the National Nature Sciences Foundation of China(Grant No.42250410321).
文摘Missing value is one of the main factors that cause dirty data.Without high-quality data,there will be no reliable analysis results and precise decision-making.Therefore,the data warehouse needs to integrate high-quality data consistently.In the power system,the electricity consumption data of some large users cannot be normally collected resulting in missing data,which affects the calculation of power supply and eventually leads to a large error in the daily power line loss rate.For the problem of missing electricity consumption data,this study proposes a group method of data handling(GMDH)based data interpolation method in distribution power networks and applies it in the analysis of actually collected electricity data.First,the dependent and independent variables are defined from the original data,and the upper and lower limits of missing values are determined according to prior knowledge or existing data information.All missing data are randomly interpolated within the upper and lower limits.Then,the GMDH network is established to obtain the optimal complexity model,which is used to predict the missing data to replace the last imputed electricity consumption data.At last,this process is implemented iteratively until the missing values do not change.Under a relatively small noise level(α=0.25),the proposed approach achieves a maximum error of no more than 0.605%.Experimental findings demonstrate the efficacy and feasibility of the proposed approach,which realizes the transformation from incomplete data to complete data.Also,this proposed data interpolation approach provides a strong basis for the electricity theft diagnosis and metering fault analysis of electricity enterprises.
基金Project supported by the Scientific Research Fund of Hunan Provincial Education Department,China (Grant No.21A0470)the Natural Science Foundation of Hunan Province,China (Grant No.2023JJ50268)+1 种基金the National Natural Science Foundation of China (Grant Nos.62172268 and 62302289)the Shanghai Science and Technology Project,China (Grant Nos.21JC1402800 and 23YF1416200)。
文摘As a branch of quantum image processing,quantum image scaling has been widely studied.However,most of the existing quantum image scaling algorithms are based on nearest-neighbor interpolation and bilinear interpolation,the quantum version of bicubic interpolation has not yet been studied.In this work,we present the first quantum image scaling scheme for bicubic interpolation based on the novel enhanced quantum representation(NEQR).Our scheme can realize synchronous enlargement and reduction of the image with the size of 2^(n)×2^(n) by integral multiple.Firstly,the image is represented by NEQR and the original image coordinates are obtained through multiple CNOT modules.Then,16 neighborhood pixels are obtained by quantum operation circuits,and the corresponding weights of these pixels are calculated by quantum arithmetic modules.Finally,a quantum matrix operation,instead of a classical convolution operation,is used to realize the sum of convolution of these pixels.Through simulation experiments and complexity analysis,we demonstrate that our scheme achieves exponential speedup over the classical bicubic interpolation algorithm,and has better effect than the quantum version of bilinear interpolation.
基金supported by the National Natural Science Foundation of China (No.61971412)。
文摘Underwater monopulse space-time adaptive track-before-detect method,which combines space-time adaptive detector(STAD)and the track-before-detect algorithm based on dynamic programming(DP-TBD),denoted as STAD-DP-TBD,can effectively detect low-speed weak targets.However,due to the complexity and variability of the underwater environment,it is difficult to obtain sufficient secondary data,resulting in a serious decline in the detection and tracking performance,and leading to poor robustness of the algorithm.In this paper,based on the adaptive matched filter(AMF)test and the RAO test,underwater monopulse AMF-DP-TBD algorithm and RAO-DP-TBD algorithm which incorporate persymmetry and symmetric spectrum,denoted as PSAMF-DP-TBD and PS-RAO-DP-TBD,are proposed and compared with the AMF-DP-TBD algorithm and RAO-DP-TBD algorithm based on persymmetry array,denoted as P-AMF-DP-TBD and P-RAO-DP-TBD.The simulation results show that the four methods can work normally with sufficient secondary data and slightly insufficient secondary data,but when the secondary data is severely insufficient,the P-AMF-DP-TBD and P-RAO-DP-TBD algorithms has failed while the PSAMF-DP-TBD and PS-RAO-DP-TBD algorithms still have good detection and tracking capabilities.
基金supported by the National Natural Science Foundation of China (No.12172154)the 111 Project (No.B14044)+1 种基金the Natural Science Foundation of Gansu Province (No.23JRRA1035)the Natural Science Foundation of Anhui University of Finance and Economics (No.ACKYC20043).
文摘In this study,a wavelet multi-resolution interpolation Galerkin method(WMIGM)is proposed to solve linear singularly perturbed boundary value problems.Unlike conventional wavelet schemes,the proposed algorithm can be readily extended to special node generation techniques,such as the Shishkin node.Such a wavelet method allows a high degree of local refinement of the nodal distribution to efficiently capture localized steep gradients.All the shape functions possess the Kronecker delta property,making the imposition of boundary conditions as easy as that in the finite element method.Four numerical examples are studied to demonstrate the validity and accuracy of the proposedwavelet method.The results showthat the use ofmodified Shishkin nodes can significantly reduce numerical oscillation near the boundary layer.Compared with many other methods,the proposed method possesses satisfactory accuracy and efficiency.The theoretical and numerical results demonstrate that the order of theε-uniform convergence of this wavelet method can reach 5.
文摘The accuracy of interpolation models applied to groundwater depends, among other factors, on the interpolation method chosen. Therefore, it is necessary to compare different approaches. For this, different methods of interpolation of nitrate concentrations were contrasted in sixty-seven wells in an aquifer in Aguascalientes, Mexico. Four general interpolation methods were used in ArcGIS 10.5 to make the maps: IDW, Kriging, Natural Neighbor and Spline. In the modeling, only method type was varied. The input parameters (location, temporality, and nitrate concentration) were the same in the four interpolations;despite this, different maximum and minimum values were obtained for each interpolation method: for IDW, 0.2 to 22.0 mg/l, for Kriging, 3.5 to 16.5 mg/l, for Natural Neighbor, 0.3 to 21.7 mg/l and for Spline −30.8 to 37.2 mg/l. Finally, an assessment of the maps obtained was conducted by comparing them with the Official Mexican Standard (OMS), where 24 of the 67 wells were found outside the 10 mg/l that the OMS establishes as maximum permissible limit for human consumption. Taking as a starting point the measured values of nitrates (0.25 to 22.12 mg/l), as well as the spatial distribution of the interpolated values, it was determined that the Krigging method best fitted the data measured in the wells within the studied aquifer.
文摘The purpose of this paper is to investigate the spatial interpolation of rainfall variability with deterministic and geostatic inspections in the Prefecture of Kilkis (Greece). The precipitation data where recorded from 12 meteorological stations in the Prefecture of Kilkis for 36 hydrological years (1973-2008). The cumulative monthly values of rainfall were studied on an annual and seasonal basis as well as during the arid-dry season. In the deterministic tests, the I.D.W. and R.B.F. checks were inspected, while in the geostatic tests, Ordinary Kriging and Universal Kriging respectively. The selection of the optimum method was made based on the least Root Mean Square Error (R.M.S.E.), as well as on the Mean Error (M.E.), as assessed by the cross validation analysis. The geostatical Kriging also considered the impact of isotropy and anisotropy across all time periods of data collection. Moreover, for Universal Kriging, the study explored spherical, exponential and Gaussian models in various combinations. Geostatistical techniques consistently demonstrated greater reliability than deterministic techniques across all time periods of data collection. Specifically, during the annual period, anisotropy was the prevailing characteristic in geostatistical techniques. Moreover, the results for the irrigation and seasonal periods were generally comparable, with few exceptions where isotropic methods yielded lower (R.M.S.E.) in some seasonal observations.
文摘This paper presents a physically plausible and somewhat illuminating first step in extending the fundamental principles of mechanical stress and strain to space-time. Here the geometry of space-time, encoded in the metric tensor, is considered to be made up of a dynamic lattice of extremely small, localized fields that form a perfectly elastic Lorentz symmetric space-time at the global (macroscopic) scale. This theoretical model of space-time at the Planck scale leads to a somewhat surprising result in which matter waves in curved space-time radiate thermal gravitational energy, as well as an equally intriguing relationship for the anomalous dispersion of light in a gravitational field.
基金supported by the National Natural Science Foundation of China(52372310)the State Key Laboratory of Advanced Rail Autonomous Operation(RAO2023ZZ001)+1 种基金the Fundamental Research Funds for the Central Universities(2022JBQY001)Beijing Laboratory of Urban Rail Transit.
文摘The emerging virtual coupling technology aims to operate multiple train units in a Virtually Coupled Train Set(VCTS)at a minimal but safe distance.To guarantee collision avoidance,the safety distance should be calculated using the state-of-the-art space-time separation principle that separates the Emergency Braking(EB)trajectories of two successive units during the whole EB process.In this case,the minimal safety distance is usually numerically calculated without an analytic formulation.Thus,the constrained VCTS control problem is hard to address with space-time separation,which is still a gap in the existing literature.To solve this problem,we propose a Distributed Economic Model Predictive Control(DEMPC)approach with computation efficiency and theoretical guarantee.Specifically,to alleviate the computation burden,we transform implicit safety constraints into explicitly linear ones,such that the optimal control problem in DEMPC is a quadratic programming problem that can be solved efficiently.For theoretical analysis,sufficient conditions are derived to guarantee the recursive feasibility and stability of DEMPC,employing compatibility constraints,tube techniques and terminal ingredient tuning.Moreover,we extend our approach with globally optimal and distributed online EB configuration methods to shorten the minimal distance among VCTS.Finally,experimental results demonstrate the performance and advantages of the proposed approaches.
基金Project(17D02)supported by the Open Fund of State Laboratory of Information Engineering in Surveying,Mapping and Remote Sensing,Wuhan University,ChinaProject supported by the State Key Laboratory of Satellite Navigation System and Equipment Technology,China
文摘In various environmental studies, geoscience variables not only have the characteristics of time and space, but also are influenced by other variables. Multivariate spatiotemporal variables can improve the accuracy of spatiotemporal estimation. Taking the monthly mean ground observation data of the period 1960–2013 precipitation in the Xinjiang Uygur Autonomous Region, China, the spatiotemporal distribution from January to December in 2013 was respectively estimated by space-time Kriging and space-time CoKriging. Modeling spatiotemporal direct variograms and a cross variogram was a key step in space-time CoKriging. Taking the monthly mean air relative humidity of the same site at the same time as the covariates, the spatiotemporal direct variograms and the spatiotemporal cross variogram of the monthly mean precipitation for the period 1960–2013 were modeled. The experimental results show that the space-time CoKriging reduces the mean square error by 31.46% compared with the space-time ordinary Kriging. The correlation coefficient between the estimated values and the observed values of the space-time CoKriging is 5.07% higher than the one of the space-time ordinary Kriging. Therefore, a space-time CoKriging interpolation with air humidity as a covariate improves the interpolation accuracy.
基金the National Natural Science Foundation of China (Grant No. 6217070290)Shanghai Science and Technology Project (Grant Nos. 21JC1402800 and 20040501500)。
文摘As a part of quantum image processing, quantum image scaling is a significant technology for the development of quantum computation. At present, most of the quantum image scaling schemes are based on grayscale images, with relatively little processing for color images. This paper proposes a quantum color image scaling scheme based on bilinear interpolation, which realizes the 2^(n_(1)) × 2^(n_(2)) quantum color image scaling. Firstly, the improved novel quantum representation of color digital images(INCQI) is employed to represent a 2^(n_(1)) × 2^(n_(2)) quantum color image, and the bilinear interpolation method for calculating pixel values of the interpolated image is presented. Then the quantum color image scaling-up and scaling-down circuits are designed by utilizing a series of quantum modules, and the complexity of the circuits is analyzed.Finally, the experimental simulation results of MATLAB based on the classical computer are given. The ultimate results demonstrate that the complexities of the scaling-up and scaling-down schemes are quadratic and linear, respectively, which are much lower than the cubic function and exponential function of other bilinear interpolation schemes.
基金supported by National Natural Science Foundation of China(11871006,11671271)。
文摘This paper investigates the optimal Birkhoff interpolation and Birkhoff numbers of some function spaces in space L∞[-1,1]and weighted spaces Lp,ω[-1,1],1≤p<∞,with w being a continuous integrable weight function in(-1,1).We proved that the Lagrange interpolation algorithms based on the zeros of some polynomials are optimal.We also show that the Lagrange interpolation algorithms based on the zeros of some polynomials are optimal when the function values of the two endpoints are included in the interpolation systems.
基金We gratefully acknowledge the support of National Natural Science Foundation of China(NSFC)(Grant No.51977133&Grant No.U2066209).
文摘Randomness and fluctuations in wind power output may cause changes in important parameters(e.g.,grid frequency and voltage),which in turn affect the stable operation of a power system.However,owing to external factors(such as weather),there are often various anomalies in wind power data,such as missing numerical values and unreasonable data.This significantly affects the accuracy of wind power generation predictions and operational decisions.Therefore,developing and applying reliable wind power interpolation methods is important for promoting the sustainable development of the wind power industry.In this study,the causes of abnormal data in wind power generation were first analyzed from a practical perspective.Second,an improved complete ensemble empirical mode decomposition with adaptive noise(ICEEMDAN)method with a generative adversarial interpolation network(GAIN)network was proposed to preprocess wind power generation and interpolate missing wind power generation sub-components.Finally,a complete wind power generation time series was reconstructed.Compared to traditional methods,the proposed ICEEMDAN-GAIN combination interpolation model has a higher interpolation accuracy and can effectively reduce the error impact caused by wind power generation sequence fluctuations.
基金supported by the Deanship of Scientific Research at King Khalid University,Saudi Arabia (R.G.P.1/207/43)。
文摘This paper presents an extension of certain forms of the real Paley-Wiener theorems to the Minkowski space-time algebra. Our emphasis is dedicated to determining the space-time valued functions whose space-time Fourier transforms(SFT) have compact support using the partial derivatives operator and the Dirac operator of higher order.
基金supported by the National Natural Science Foun-dation of China(NSFC)Basic Science Center Program for“Multiscale Problems in Nonlinear Mechanics”(Grant No.11988102).
文摘We consider the two-point,two-time(space-time)correlation of passive scalar R(r,τ)in the Kraichnan model under the assumption of homogeneity and isotropy.Using the fine-gird PDF method,we find that R(r,τ)satisfies a diffusion equation with constant diffusion coefficient determined by velocity variance and molecular diffusion.Itssolution can be expressed in terms of the two-point,one time correlation of passive scalar,i.e.,R(r,0).Moreover,the decorrelation o R(k,τ),which is the Fourier transform of R(r,τ),is determined byR(k,0)and a diffusion kernal.
基金supported by the NationalNatural Science Foundation of China(Grant No.42102318)the Program for Professor of Special Appointment(Eastern Scholar)at Shanghai Institutions of Higher Learning.
文摘High-resolution underwater digital elevation models(DEMs)are important for water and soil conservation,hydrological analysis,and river channel dredging.In this work,the underwater topography of the Panjing River in Shanghai,China,was measured by an unmanned surface vessel.Five different interpolation methods were used to generate the underwater DEM and their precision and applicability for different underwater landforms were analyzed through cross-validation.The results showed that there was a positive correlation between the interpolation error and the terrain surface roughness.The five interpolation methods were all appropriate for the survey area,but their accuracy varied with different surface roughness.Based on the analysis results,an integrated approach was proposed to automatically select the appropriate interpolation method according to the different surface roughness in the surveying area.This approach improved the overall interpolation precision.The suggested technique provides a reference for the selection of interpolationmethods for underwater DEMdata.
文摘In this paper, a general family of derivative-free n + 1-point iterative methods using n + 1 evaluations of the function and a general family of n-point iterative methods using n evaluations of the function and only one evaluation of its derivative are constructed by the inverse interpolation with the memory on the previous step for solving the simple root of a nonlinear equation. The order and order of convergence of them are proved respectively. Finally, the proposed methods and the basins of attraction are demonstrated by the numerical examples.
文摘We have recently published a series of papers on a theory we call collision space-time, that seems to unify gravity and quantum mechanics. In this theory, mass and energy are redefined. We have not so far demonstrated how to make it compatible with electric properties such as charge and the Coulomb force. The aim of this paper is to show how electric properties can be reformulated to make it consistent with collision space-time. It is shown that we need to incorporate the Planck scale into the electric constants to do so. This is also fully possible from a practical point of view, as it has recently been shown how to measure the Planck length independent of other constants and without the need for dimensional analysis.
文摘It is well-known that interpolation by rational functions results in a more accurate approximation than the polynomials interpolation.However,classical rational interpolation has some deficiencies such as uncontrollable poles and low convergence order.In contrast with the classical rational interpolants,the generalized barycentric rational interpolants which depend linearly on the interpolated values,yield infinite smooth approximation with no poles in real numbers.In this paper,a numerical collocation approach,based on the generalized barycentric rational interpolation and Gaussian quadrature formula,was introduced to approximate the solution of Volterra-Fredholm integral equations.Three types of points in the solution domain are used as interpolation nodes.The obtained numerical results confirm that the barycentric rational interpolants are efficient tools for solving Volterra-Fredholm integral equations.Moreover,integral equations with Runge’s function as an exact solution,no oscillation occurrs in the obtained approximate solutions so that the Runge’s phenomenon is avoided.