With the increasing availability of precipitation radar data from space,enhancement of the resolution of spaceborne precipitation observations is important,particularly for hazard prediction and climate modeling at lo...With the increasing availability of precipitation radar data from space,enhancement of the resolution of spaceborne precipitation observations is important,particularly for hazard prediction and climate modeling at local scales relevant to extreme precipitation intensities and gradients.In this paper,the statistical characteristics of radar precipitation reflectivity data are studied and modeled using a hidden Markov tree(HMT)in the wavelet domain.Then,a high-resolution interpolation algorithm is proposed for spaceborne radar reflectivity using the HMT model as prior information.Owing to the small and transient storm elements embedded in the larger and slowly varying elements,the radar precipitation data exhibit distinct multiscale statistical properties,including a non-Gaussian structure and scale-to-scale dependency.An HMT model can capture well the statistical properties of radar precipitation,where the wavelet coefficients in each sub-band are characterized as a Gaussian mixture model(GMM),and the wavelet coefficients from the coarse scale to fine scale are described using a multiscale Markov process.The state probabilities of the GMM are determined using the expectation maximization method,and other parameters,for instance,the variance decay parameters in the HMT model are learned and estimated from high-resolution ground radar reflectivity images.Using the prior model,the wavelet coefficients at finer scales are estimated using local Wiener filtering.The interpolation algorithm is validated using data from the precipitation radar onboard the Tropical Rainfall Measurement Mission satellite,and the reconstructed results are found to be able to enhance the spatial resolution while optimally reproducing the local extremes and gradients.展开更多
Dual-frequency and multi-polarization spaceborne rain and cloud measuring radar is the inevitable trend of remote sensing techniques.Techniques of new generation dual-frequency and multi-polarization spaceborne rain a...Dual-frequency and multi-polarization spaceborne rain and cloud measuring radar is the inevitable trend of remote sensing techniques.Techniques of new generation dual-frequency and multi-polarization spaceborne rain and cloud measuring radar are studied systematically.Radar block diagram and main parameters are presented.Antenna subsystem scheme is analyzed and antenna parameters are proposed.Central electronic device subsystem scheme is given and data rate of spaceborne radar is calculated.This paper is a meaningful try for carrying out spaceborne rain and cloud measuring radar design,acting as a reference to Chinese spaceborne rain and cloud measuring radar design and production in future.展开更多
Synthetic aperture radar(SAR)three-dimensional(3D)imaging technology can reconstruct the complete structure of observed targets and has been a hot topic.Compared with tomographic SAR,array interferometric SAR,and circ...Synthetic aperture radar(SAR)three-dimensional(3D)imaging technology can reconstruct the complete structure of observed targets and has been a hot topic.Compared with tomographic SAR,array interferometric SAR,and circular SAR,curve SAR can use less data to achieve 3D positioning of targets.Most existing algorithms for estimating Doppler frequency modulation(FM)rate are based on sub aperture partitioning,resulting in low computational efficiency.To address this,this article establishes a target height estimation model,which reflects the relation-ship between the height and the residual Doppler FM rate for spaceborne curve SAR.Then,a fast SAR 3D localization processing flow based on fractional Fourier transform(FrFT)is proposed.Experimental verification demonstrates that this method can estimate the Doppler FM of the target column by column,and the 3D position error for non-overlapping targets is controlled within 1 m.For overlapping points with an intensity ratio greater than 1.5,the root mean square error(RMSE)of the estimation results is around 5 m.If the separation between overlapping points is greater than 35 m,the RMSE decreases to approximately 2 m.展开更多
Doppler centroid frequency is an essential parameter in the imaging processing of the Scanning mode Synthetic Aperture Radar (ScanSAR). Inaccurate Doppler centroid frequency will result in ghost images in imaging resu...Doppler centroid frequency is an essential parameter in the imaging processing of the Scanning mode Synthetic Aperture Radar (ScanSAR). Inaccurate Doppler centroid frequency will result in ghost images in imaging result. In this letter, the principle and algorithms of Doppler centroid frequency estimation are introduced. Then the echo data of ScanSAR system is analyzed. Based on the algorithms of energy balancing and correlation Doppler estimator in the estimation of Doppler centroid frequency in strip mode SAR, an improved method for Doppler centroid frequency estimation in ScanSAR is proposed. The method has improved the accuracy of Doppler centroid frequency estimation in ScanSAR by zero padding between burst data. Finally, the proposed method is validated with the processing of ENVIronment SATellite Advanced Synthetic Aperture Radar (ENVISAT ASAR) wide swath raw data.展开更多
The spaceborne synthetic aperture radar(SAR)sparse flight 3-D imaging technology through multiple observations of the cross-track direction is designed to form the cross-track equivalent aperture,and achieve the third...The spaceborne synthetic aperture radar(SAR)sparse flight 3-D imaging technology through multiple observations of the cross-track direction is designed to form the cross-track equivalent aperture,and achieve the third dimensionality recognition.In this paper,combined with the actual triple star orbits,a sparse flight spaceborne SAR 3-D imaging method based on the sparse spectrum of interferometry and the principal component analysis(PCA)is presented.Firstly,interferometric processing is utilized to reach an effective sparse representation of radar images in the frequency domain.Secondly,as a method with simple principle and fast calculation,the PCA is introduced to extract the main features of the image spectrum according to its principal characteristics.Finally,the 3-D image can be obtained by inverse transformation of the reconstructed spectrum by the PCA.The simulation results of 4.84 km equivalent cross-track aperture and corresponding 1.78 m cross-track resolution verify the effective suppression of this method on high-frequency sidelobe noise introduced by sparse flight with a sparsity of 49%and random noise introduced by the receiver.Meanwhile,due to the influence of orbit distribution of the actual triple star orbits,the simulation results of the sparse flight with the 7-bit Barker code orbits are given as a comparison and reference to illuminate the significance of orbit distribution for this reconstruction results.This method has prospects for sparse flight 3-D imaging in high latitude areas for its short revisit period.展开更多
Based on dual-frequencies dual-apertures spaceborne SAR (Synthetic Aperture Radar), a new SAR system with four receiving channels and two operation modes is presented in this paper, SAR imaging and Moving Target Ind...Based on dual-frequencies dual-apertures spaceborne SAR (Synthetic Aperture Radar), a new SAR system with four receiving channels and two operation modes is presented in this paper, SAR imaging and Moving Target Indication (MTI) are studied in this system. High resolution imaging with wide swath is implemented by the Mode Ⅰ, and MTI is completed by the Mode Ⅱ. High azimuth resolution is achieved by the Displaced Phase Center (DPC) multibeam technique. And the Coherent Accumulation (CA) method, which combines dual channels data of different carrier frequency, is used to enhance the range resolution. For the data of different carrier frequency, the two aperture interferometric processing is executed to implement clutter cancellation, respectively. And the couple of clutter suppressed data are employed to implement Dual Carrier Frequency Conjugate Processing (DCFCP), then both slow and fast moving targets detection can be completed, followed by moving target imaging. The simulation results show the validity of the signal processing method of this new SAR system.展开更多
基金This study was funded by the National Natural Science Foundation of China(Grant No.41975027)the Natural Science Foundation of Jiangsu Province(Grant No.BK20171457)the National Key R&D Program on Monitoring,Early Warning and Prevention of Major Natural Disasters(Grant No.2017YFC1501401).
文摘With the increasing availability of precipitation radar data from space,enhancement of the resolution of spaceborne precipitation observations is important,particularly for hazard prediction and climate modeling at local scales relevant to extreme precipitation intensities and gradients.In this paper,the statistical characteristics of radar precipitation reflectivity data are studied and modeled using a hidden Markov tree(HMT)in the wavelet domain.Then,a high-resolution interpolation algorithm is proposed for spaceborne radar reflectivity using the HMT model as prior information.Owing to the small and transient storm elements embedded in the larger and slowly varying elements,the radar precipitation data exhibit distinct multiscale statistical properties,including a non-Gaussian structure and scale-to-scale dependency.An HMT model can capture well the statistical properties of radar precipitation,where the wavelet coefficients in each sub-band are characterized as a Gaussian mixture model(GMM),and the wavelet coefficients from the coarse scale to fine scale are described using a multiscale Markov process.The state probabilities of the GMM are determined using the expectation maximization method,and other parameters,for instance,the variance decay parameters in the HMT model are learned and estimated from high-resolution ground radar reflectivity images.Using the prior model,the wavelet coefficients at finer scales are estimated using local Wiener filtering.The interpolation algorithm is validated using data from the precipitation radar onboard the Tropical Rainfall Measurement Mission satellite,and the reconstructed results are found to be able to enhance the spatial resolution while optimally reproducing the local extremes and gradients.
基金Supported by Horizontal Program of Space Long March Rocket Technology Co. Ltd (500036)
文摘Dual-frequency and multi-polarization spaceborne rain and cloud measuring radar is the inevitable trend of remote sensing techniques.Techniques of new generation dual-frequency and multi-polarization spaceborne rain and cloud measuring radar are studied systematically.Radar block diagram and main parameters are presented.Antenna subsystem scheme is analyzed and antenna parameters are proposed.Central electronic device subsystem scheme is given and data rate of spaceborne radar is calculated.This paper is a meaningful try for carrying out spaceborne rain and cloud measuring radar design,acting as a reference to Chinese spaceborne rain and cloud measuring radar design and production in future.
基金supported in part by the National Key Research and Development Program of China(No.SQ2022YFB 3900055)in part by the National Natural Science Foundation of China(No.62101039)+1 种基金in part by the Shandong Excellent Young Scientists Fund Program(Overseas)in part by China Postdoctoral Science Foundation(No.2022M720443).
文摘Synthetic aperture radar(SAR)three-dimensional(3D)imaging technology can reconstruct the complete structure of observed targets and has been a hot topic.Compared with tomographic SAR,array interferometric SAR,and circular SAR,curve SAR can use less data to achieve 3D positioning of targets.Most existing algorithms for estimating Doppler frequency modulation(FM)rate are based on sub aperture partitioning,resulting in low computational efficiency.To address this,this article establishes a target height estimation model,which reflects the relation-ship between the height and the residual Doppler FM rate for spaceborne curve SAR.Then,a fast SAR 3D localization processing flow based on fractional Fourier transform(FrFT)is proposed.Experimental verification demonstrates that this method can estimate the Doppler FM of the target column by column,and the 3D position error for non-overlapping targets is controlled within 1 m.For overlapping points with an intensity ratio greater than 1.5,the root mean square error(RMSE)of the estimation results is around 5 m.If the separation between overlapping points is greater than 35 m,the RMSE decreases to approximately 2 m.
文摘Doppler centroid frequency is an essential parameter in the imaging processing of the Scanning mode Synthetic Aperture Radar (ScanSAR). Inaccurate Doppler centroid frequency will result in ghost images in imaging result. In this letter, the principle and algorithms of Doppler centroid frequency estimation are introduced. Then the echo data of ScanSAR system is analyzed. Based on the algorithms of energy balancing and correlation Doppler estimator in the estimation of Doppler centroid frequency in strip mode SAR, an improved method for Doppler centroid frequency estimation in ScanSAR is proposed. The method has improved the accuracy of Doppler centroid frequency estimation in ScanSAR by zero padding between burst data. Finally, the proposed method is validated with the processing of ENVIronment SATellite Advanced Synthetic Aperture Radar (ENVISAT ASAR) wide swath raw data.
基金This work was supported by the General Design Department,China Academy of Space Technology(10377).
文摘The spaceborne synthetic aperture radar(SAR)sparse flight 3-D imaging technology through multiple observations of the cross-track direction is designed to form the cross-track equivalent aperture,and achieve the third dimensionality recognition.In this paper,combined with the actual triple star orbits,a sparse flight spaceborne SAR 3-D imaging method based on the sparse spectrum of interferometry and the principal component analysis(PCA)is presented.Firstly,interferometric processing is utilized to reach an effective sparse representation of radar images in the frequency domain.Secondly,as a method with simple principle and fast calculation,the PCA is introduced to extract the main features of the image spectrum according to its principal characteristics.Finally,the 3-D image can be obtained by inverse transformation of the reconstructed spectrum by the PCA.The simulation results of 4.84 km equivalent cross-track aperture and corresponding 1.78 m cross-track resolution verify the effective suppression of this method on high-frequency sidelobe noise introduced by sparse flight with a sparsity of 49%and random noise introduced by the receiver.Meanwhile,due to the influence of orbit distribution of the actual triple star orbits,the simulation results of the sparse flight with the 7-bit Barker code orbits are given as a comparison and reference to illuminate the significance of orbit distribution for this reconstruction results.This method has prospects for sparse flight 3-D imaging in high latitude areas for its short revisit period.
基金Supported by the National Natural Science Foundation of China (NSFC) (No.60772103)China National Key Laboratory of Microwave Imaging Technology Foundation (No.9140C1903050804)
文摘Based on dual-frequencies dual-apertures spaceborne SAR (Synthetic Aperture Radar), a new SAR system with four receiving channels and two operation modes is presented in this paper, SAR imaging and Moving Target Indication (MTI) are studied in this system. High resolution imaging with wide swath is implemented by the Mode Ⅰ, and MTI is completed by the Mode Ⅱ. High azimuth resolution is achieved by the Displaced Phase Center (DPC) multibeam technique. And the Coherent Accumulation (CA) method, which combines dual channels data of different carrier frequency, is used to enhance the range resolution. For the data of different carrier frequency, the two aperture interferometric processing is executed to implement clutter cancellation, respectively. And the couple of clutter suppressed data are employed to implement Dual Carrier Frequency Conjugate Processing (DCFCP), then both slow and fast moving targets detection can be completed, followed by moving target imaging. The simulation results show the validity of the signal processing method of this new SAR system.