Based on Total Ozone Mapping Spectrometer (TOMS) monthly aerosol optical thickness (AOT) measurements in 1980–2001 a study is made of space/time patterns and difference between land and sea of AOT 0.50 μm thick ...Based on Total Ozone Mapping Spectrometer (TOMS) monthly aerosol optical thickness (AOT) measurements in 1980–2001 a study is made of space/time patterns and difference between land and sea of AOT 0.50 μm thick over China,which are put into correlation analysis with synchronous extreme temperature indices (warm/cold day and night).Results suggest that 1) the long-term mean AOT over China is characterized by typical geography,with pronounced land-sea contrast.And AOT has significant seasonality and its seasonal difference is diminished as a function of latitude.2) On the whole,the AOT displays an appreciably increasing trend,with the distinct increase in the eastern Qinghai-Tibetan plateau and SW China,North China,the mid-lower Changjiang (MiLY) valley as well as the South China Sea,but marginal decrease over western/northern Xinjiang and part of South China.3) The AOT over land and sea is marked by conspicuous intra-seasonal and -yearly oscillations,with remarkable periods at one-,two-yr and more (as interannual periods).4) Land AOT change is well correlated with extremely temperature indexes.Generally,the correlations of AOT to the extreme temperature indices are more significant in Eastern China with 110 ° E as the division.Their high-correlation regions are along the Southern China coastline,the Loess Plateau and the Sichuan Basin,and even higher in North China Plain and the mid-lower Changjiang River reaches.5) Simulations of LMDZ-regional model indicate that aerosol effects may result in cooling all over China,particularly in Eastern China.The contribution of aerosol change may result in more decrease in the maximum temperature than the minimum,with decrease of 0.11/0.08 K for zonal average,respectively.展开更多
A series of theoretical explorations and field tests have been carried out to efficiently develop the Mahu tight conglomerate oilfield in the Junggar Basin.Concepts of steered-by-edge fracturing and proactive fracturi...A series of theoretical explorations and field tests have been carried out to efficiently develop the Mahu tight conglomerate oilfield in the Junggar Basin.Concepts of steered-by-edge fracturing and proactive fracturing interference were proposed.A series of innovative technologies were developed and implemented including optimization of 3-D staggered well pattern,proactive control and utilization of spatial stress field,and synergetic integration of multiple elements.Different from shale,the unique rock fabric and strong heterogeneities of tight conglomerate formation are favorable factors for forming complex fractures,small space well pattern can proactively control and make use of interwell interference to increase the complexity of fracture network,and the"optimum-size and distribution"hydraulic fracturing can be achieved through synergetic optimization.During pilot phase of this field,both depletion with hydraulically fractured vertical wells and volume fracturing in horizontal wells were tested after water injection through vertical wells,then the multi-stage fracturing with horizontal well was taken as the primary development technology.A series of engineering methods were tested,and key development parameters were evaluated such as well spacing,lateral length,fractures spacing,fracturing size,and fracturing operation process.According to geoengineering approach,the 100 m/150 m tridimensional tight-spacing staggered development method was established with systematic integration of big well clusters,multiple stacked pay zones,small well spacing,long lateral length,fine perforation clustering,zipper fracturing and factory operation.According to half-year production performance,100 m/150 m small spacing wells outperformed 500 m/400 m/300 m spacing wells.Its average estimated ultimate recovery(EUR)of wells was identical with those best wells from large-spacing area.Compared with the overall performance of Mahu oilfield,the drainage efficiency and estimated recovery factor of this pilot were significantly boosted with improved economics.展开更多
Exploring the scale-effect of different land use types on the distribution pattern of urban park green space(PGS)at multiple grid scales would inform rational allocation and efficient collaborative construction of urb...Exploring the scale-effect of different land use types on the distribution pattern of urban park green space(PGS)at multiple grid scales would inform rational allocation and efficient collaborative construction of urban development land at different scales.Selecting 300-m,500-m,1,000-m,and 2,000-m grid scales,the research employed Create Fishnet tool in ArcGIS and Geodetector to construct a scale-effect analysis framework that revealed the scale-effects of different land use types on the distribution pattern of PGS at multiple grid scales in the main urban area of Nanjing,China in 2006,2012,and 2017.Main research results are:1)the overall distribution pattern of PGS showed the evolution characteristics from polarization to advancing quality and efficiency,while the trend gradually weakened with the increase of grid scale;2)the scale-effect of other land use types on PGS increasingly enhanced-the larger the grid scale,the more obvious the synergistic or compressive effect;3)the interactive scaleeffects of different land use types gradually enhanced-the larger the grid scale,the more significant the overall factor interaction;and 4)at the 300-m grid scale,the major interaction factors were residential,transportation,industrial/manufacturing,water area,and administration/public services,which gradually changed to residential,water area,and administration/public services up to the 2,000-m grid scale.The findings of this paper are expected to deepen the theory of the coupling between PGS and other land use types,as well as provide scientific support and a basis for efficient allocation,spatial layout optimization,and sustainable development of urban spaces.展开更多
Training neural network to recognize targets needs a lot of samples.People usually get these samples in a non-systematic way,which can miss or overemphasize some target information.To improve this situation,a new meth...Training neural network to recognize targets needs a lot of samples.People usually get these samples in a non-systematic way,which can miss or overemphasize some target information.To improve this situation,a new method based on virtual model and invariant moments was proposed to generate training samples.The method was composed of the following steps:use computer and simulation software to build target object's virtual model and then simulate the environment,light condition,camera parameter,etc.;rotate the model by spin and nutation of inclination to get the image sequence by virtual camera;preprocess each image and transfer them into binary image;calculate the invariant moments for each image and get a vectors' sequence.The vectors' sequence which was proved to be complete became the training samples together with the target outputs.The simulated results showed that the proposed method could be used to recognize the real targets and improve the accuracy of target recognition effectively when the sampling interval was short enough and the circumstance simulation was close enough.展开更多
The stomatal pores of plant leaves control gas exchange with the environment.Stomatal development is prevised regulated by both internal genetic programs and environmental cues.Among various environmental factors,ligh...The stomatal pores of plant leaves control gas exchange with the environment.Stomatal development is prevised regulated by both internal genetic programs and environmental cues.Among various environmental factors,light regulation of stomata formation has been extensively studied in Arabidopsis.In this review,we summarize recent advances in the genetic control of stomata development and its regulation by light.We also present a comparative analysis of the conserved and diverged stomatal regulatory networks between Arabidopsis and cereal grasses.Lastly,we provide our perspectives on manipulation of the stomata density on plant leaves for the purpose of breeding crops that are better adapted to the adverse environment and high-density planting conditions.展开更多
Hengduan Mountains offer land space for a variety of ecological services. However, the sustainable development and management of land space has been challenged by increased human activities in recent years. This paper...Hengduan Mountains offer land space for a variety of ecological services. However, the sustainable development and management of land space has been challenged by increased human activities in recent years. This paper performs the spatial pattern analysis of the quantitative and structural changes of various landscapes at different altitudes, and uses the land use data in 1990, 2000, 2010 and 2015 to reveal how various land patterns have changed. The results show that, within the production-living-ecological space schema, the ecological space dominates Hengduan Mountains, while the production and living space was mainly distributed in south region. During 1990-2015, the production-living-ecological spatial changes had been gradually accelerated and the regional differences had become more prominent. The agricultural production space had continuously decreased by 1132.31 km^2, and the industrial and mining production space had rapidly increased by 281.4 km^2 during 1990-2015. The living space had steadily increased, and the ecological space had increased with fluctuations. The land space pattern in Hengduan Mountains was greatly restricted by the terrain, such as altitude and slope. The implementations of China Western Development Strategy and the Returning Farmland to Forest Program had favorably promoted the changes of land spatial pattern in Hengduan Mountains.展开更多
基金Foundation of Jiangsu Key Laboratory of Meteorological Disaster under contract No. KLME05001
文摘Based on Total Ozone Mapping Spectrometer (TOMS) monthly aerosol optical thickness (AOT) measurements in 1980–2001 a study is made of space/time patterns and difference between land and sea of AOT 0.50 μm thick over China,which are put into correlation analysis with synchronous extreme temperature indices (warm/cold day and night).Results suggest that 1) the long-term mean AOT over China is characterized by typical geography,with pronounced land-sea contrast.And AOT has significant seasonality and its seasonal difference is diminished as a function of latitude.2) On the whole,the AOT displays an appreciably increasing trend,with the distinct increase in the eastern Qinghai-Tibetan plateau and SW China,North China,the mid-lower Changjiang (MiLY) valley as well as the South China Sea,but marginal decrease over western/northern Xinjiang and part of South China.3) The AOT over land and sea is marked by conspicuous intra-seasonal and -yearly oscillations,with remarkable periods at one-,two-yr and more (as interannual periods).4) Land AOT change is well correlated with extremely temperature indexes.Generally,the correlations of AOT to the extreme temperature indices are more significant in Eastern China with 110 ° E as the division.Their high-correlation regions are along the Southern China coastline,the Loess Plateau and the Sichuan Basin,and even higher in North China Plain and the mid-lower Changjiang River reaches.5) Simulations of LMDZ-regional model indicate that aerosol effects may result in cooling all over China,particularly in Eastern China.The contribution of aerosol change may result in more decrease in the maximum temperature than the minimum,with decrease of 0.11/0.08 K for zonal average,respectively.
基金Supported by the China National Science and Technology Major Project(2017ZX05070)PetroChina Science and Technology Major Project(2017E-04)PetroChina–China University of Petroleum(Beijing)Strategic Cooperation Project(ZLZX2020-01)
文摘A series of theoretical explorations and field tests have been carried out to efficiently develop the Mahu tight conglomerate oilfield in the Junggar Basin.Concepts of steered-by-edge fracturing and proactive fracturing interference were proposed.A series of innovative technologies were developed and implemented including optimization of 3-D staggered well pattern,proactive control and utilization of spatial stress field,and synergetic integration of multiple elements.Different from shale,the unique rock fabric and strong heterogeneities of tight conglomerate formation are favorable factors for forming complex fractures,small space well pattern can proactively control and make use of interwell interference to increase the complexity of fracture network,and the"optimum-size and distribution"hydraulic fracturing can be achieved through synergetic optimization.During pilot phase of this field,both depletion with hydraulically fractured vertical wells and volume fracturing in horizontal wells were tested after water injection through vertical wells,then the multi-stage fracturing with horizontal well was taken as the primary development technology.A series of engineering methods were tested,and key development parameters were evaluated such as well spacing,lateral length,fractures spacing,fracturing size,and fracturing operation process.According to geoengineering approach,the 100 m/150 m tridimensional tight-spacing staggered development method was established with systematic integration of big well clusters,multiple stacked pay zones,small well spacing,long lateral length,fine perforation clustering,zipper fracturing and factory operation.According to half-year production performance,100 m/150 m small spacing wells outperformed 500 m/400 m/300 m spacing wells.Its average estimated ultimate recovery(EUR)of wells was identical with those best wells from large-spacing area.Compared with the overall performance of Mahu oilfield,the drainage efficiency and estimated recovery factor of this pilot were significantly boosted with improved economics.
文摘Exploring the scale-effect of different land use types on the distribution pattern of urban park green space(PGS)at multiple grid scales would inform rational allocation and efficient collaborative construction of urban development land at different scales.Selecting 300-m,500-m,1,000-m,and 2,000-m grid scales,the research employed Create Fishnet tool in ArcGIS and Geodetector to construct a scale-effect analysis framework that revealed the scale-effects of different land use types on the distribution pattern of PGS at multiple grid scales in the main urban area of Nanjing,China in 2006,2012,and 2017.Main research results are:1)the overall distribution pattern of PGS showed the evolution characteristics from polarization to advancing quality and efficiency,while the trend gradually weakened with the increase of grid scale;2)the scale-effect of other land use types on PGS increasingly enhanced-the larger the grid scale,the more obvious the synergistic or compressive effect;3)the interactive scaleeffects of different land use types gradually enhanced-the larger the grid scale,the more significant the overall factor interaction;and 4)at the 300-m grid scale,the major interaction factors were residential,transportation,industrial/manufacturing,water area,and administration/public services,which gradually changed to residential,water area,and administration/public services up to the 2,000-m grid scale.The findings of this paper are expected to deepen the theory of the coupling between PGS and other land use types,as well as provide scientific support and a basis for efficient allocation,spatial layout optimization,and sustainable development of urban spaces.
基金Supported by the Ministerial Level Research Foundation(404040401)
文摘Training neural network to recognize targets needs a lot of samples.People usually get these samples in a non-systematic way,which can miss or overemphasize some target information.To improve this situation,a new method based on virtual model and invariant moments was proposed to generate training samples.The method was composed of the following steps:use computer and simulation software to build target object's virtual model and then simulate the environment,light condition,camera parameter,etc.;rotate the model by spin and nutation of inclination to get the image sequence by virtual camera;preprocess each image and transfer them into binary image;calculate the invariant moments for each image and get a vectors' sequence.The vectors' sequence which was proved to be complete became the training samples together with the target outputs.The simulated results showed that the proposed method could be used to recognize the real targets and improve the accuracy of target recognition effectively when the sampling interval was short enough and the circumstance simulation was close enough.
基金H.W.is supported by a project sponsored by the Education Department of Guangdong Province(2018KQNCX022).
文摘The stomatal pores of plant leaves control gas exchange with the environment.Stomatal development is prevised regulated by both internal genetic programs and environmental cues.Among various environmental factors,light regulation of stomata formation has been extensively studied in Arabidopsis.In this review,we summarize recent advances in the genetic control of stomata development and its regulation by light.We also present a comparative analysis of the conserved and diverged stomatal regulatory networks between Arabidopsis and cereal grasses.Lastly,we provide our perspectives on manipulation of the stomata density on plant leaves for the purpose of breeding crops that are better adapted to the adverse environment and high-density planting conditions.
基金Major State Basic Research Development Program of China,No.2015CB452706
文摘Hengduan Mountains offer land space for a variety of ecological services. However, the sustainable development and management of land space has been challenged by increased human activities in recent years. This paper performs the spatial pattern analysis of the quantitative and structural changes of various landscapes at different altitudes, and uses the land use data in 1990, 2000, 2010 and 2015 to reveal how various land patterns have changed. The results show that, within the production-living-ecological space schema, the ecological space dominates Hengduan Mountains, while the production and living space was mainly distributed in south region. During 1990-2015, the production-living-ecological spatial changes had been gradually accelerated and the regional differences had become more prominent. The agricultural production space had continuously decreased by 1132.31 km^2, and the industrial and mining production space had rapidly increased by 281.4 km^2 during 1990-2015. The living space had steadily increased, and the ecological space had increased with fluctuations. The land space pattern in Hengduan Mountains was greatly restricted by the terrain, such as altitude and slope. The implementations of China Western Development Strategy and the Returning Farmland to Forest Program had favorably promoted the changes of land spatial pattern in Hengduan Mountains.