期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
全局视角下的南京地铁网络拓扑结构比较 被引量:2
1
作者 蔡虹 徐腾飞 朱金福 《工业工程》 2017年第5期51-57,共7页
基于复杂网络理论,从全局视角出发,针对南京地铁2016年实际运营网络及2021年规划运营网络分别构建Space L拓扑结构模型,并针对地铁网络的平面特征,应用节点度及其分布、平均最短距离及其分布、网络直径、介数及联通度指标对其结构特性... 基于复杂网络理论,从全局视角出发,针对南京地铁2016年实际运营网络及2021年规划运营网络分别构建Space L拓扑结构模型,并针对地铁网络的平面特征,应用节点度及其分布、平均最短距离及其分布、网络直径、介数及联通度指标对其结构特性进行分析比较。研究结果表明,2016与2021年地铁运营网络均具有无标度特性,节点度指数分别为4.2与3.7,2021年地铁网络肥尾特征更明显,且hub点发生较大变化;2021较2016年地铁网络联通度有所提高,但都不到0.4,且网络平均最短距离均大于其网络顶点数目的对数,因此不具备小世界网络的特征。根据结论提出正确识别一个网络的关键节点,有必要将网络本身的静态结构与代表动态结构的流量因素综合考虑;其次衡量地铁网络的发展程度时,需将覆盖区域面积加以考虑,单纯考虑联通度值不够准确。此研究对进一步研究南京地铁网络鲁棒性、易损性、可恢复性进而优化其资源配置、加强风险管理具有重要意义。 展开更多
关键词 南京地铁网络 spacel拓扑模型 节点度分布 平均最短距离 网络联通度
下载PDF
Toward Robust and Efficient Low-Light Image Enhancement:Progressive Attentive Retinex Architecture Search
2
作者 Xiaoke Shang Nan An +1 位作者 Shaomin Zhang Nai Ding 《Tsinghua Science and Technology》 SCIE EI CAS CSCD 2023年第3期580-594,共15页
In recent years,learning-based low-light image enhancement methods have shown excellent performance,but the heuristic design adopted by most methods requires high engineering skills for developers,causing expensive in... In recent years,learning-based low-light image enhancement methods have shown excellent performance,but the heuristic design adopted by most methods requires high engineering skills for developers,causing expensive inference costs that are unfriendly to the hardware platform.To handle this issue,we propose to automatically discover an efficient architecture,called progressive attentive Retinex network(PAR-Net).We define a new attentive Retinex framework by introducing the attention mechanism to strengthen structural representation.A multi-level search space containing micro-level on the operation and macro-level on the cell is established to realize meticulous construction.To endow the searched architecture with the hardware-aware property,we develop a latency-constrained progressive search strategy that successfully improves the model capability by explicitly expressing the intrinsic relationship between different models defined in the attentive Retinex framework.Extensive quantitative and qualitative experimental results fully justify the superiority of our proposed approach against other state-of-the-art methods.A series of analytical evaluations is performed to illustrate the validity of our proposed algorithm. 展开更多
关键词 low-light image enhancement attentive Retinex framework multi-level search spacel progressive search strategy latency constraint
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部