The airborne conformal array(CFA)radar's clutter ridges are range-modulated,which result in a bias in the estimation of the clutter covariance matrix(CCM)of the cell under test(CUT),further,reducing the clutter su...The airborne conformal array(CFA)radar's clutter ridges are range-modulated,which result in a bias in the estimation of the clutter covariance matrix(CCM)of the cell under test(CUT),further,reducing the clutter suppression performance of the airborne CFA radar.The clutter ridges can be effectively compensated by the space-time separation interpolation(STSINT)method,which costs less computation than the space-time interpolation(STINT)method,but the performance of interpolation algorithms is seriously affected by the short-range clutter,especially near the platform height.Location distributions of CFA are free,which yields serious impact that range spaces of steering vector matrices are non-orthogonal complement and even no longer disjoint.Further,a new method is proposed that the shortrange clutter is pre-processed by oblique projection with the intersected range spaces(OPIRS),and then clutter data after being pre-processed are compensated to the desired range bin through the STSINT method.The OPIRS also has good compatibility and can be used in combination with many existing methods.At the same time,oblique projectors of OPIRS can be obtained in advance,so the proposed method has almost the same computational load as the traditional compensation method.In addition,the proposed method can perform well when the channel error exists.Computer simulation results verify the effectiveness of the proposed method.展开更多
In response to the high requirements of industrial precision test, presenting a method of testing relative relation of space points was studied. The spatial-coordinate testing system was established by using high prec...In response to the high requirements of industrial precision test, presenting a method of testing relative relation of space points was studied. The spatial-coordinate testing system was established by using high precision theodolites and horizontal staff. The related test was conducted with the use of the space intersection and the precision was evaluated based on the error of baseline. In the practical application of radar-development base, the relative relation of space points was implemented by using electronic theodolite and horizontal staff, which can be easily operated. Furthermore, it can be conveniently used to test small areas where the instruments are difficult to be installed and for high industrial requirements of precision test. The test results can fully meet the strict industrial requirements.展开更多
We fix a counting function of multiplicities of algebraic points in a projective hypersurface over a number field, and take the sum over all algebraic points of bounded height and fixed degree. An upper bound for the ...We fix a counting function of multiplicities of algebraic points in a projective hypersurface over a number field, and take the sum over all algebraic points of bounded height and fixed degree. An upper bound for the sum with respect to this counting function will be given in terms of the degree of the hypersurface, the dimension of the singular locus, the upper bounds of height, and the degree of the field of definition.展开更多
基金supported by the Fund for Foreign Scholars in University Research and Teaching Programs(the 111 Project)(B18039)。
文摘The airborne conformal array(CFA)radar's clutter ridges are range-modulated,which result in a bias in the estimation of the clutter covariance matrix(CCM)of the cell under test(CUT),further,reducing the clutter suppression performance of the airborne CFA radar.The clutter ridges can be effectively compensated by the space-time separation interpolation(STSINT)method,which costs less computation than the space-time interpolation(STINT)method,but the performance of interpolation algorithms is seriously affected by the short-range clutter,especially near the platform height.Location distributions of CFA are free,which yields serious impact that range spaces of steering vector matrices are non-orthogonal complement and even no longer disjoint.Further,a new method is proposed that the shortrange clutter is pre-processed by oblique projection with the intersected range spaces(OPIRS),and then clutter data after being pre-processed are compensated to the desired range bin through the STSINT method.The OPIRS also has good compatibility and can be used in combination with many existing methods.At the same time,oblique projectors of OPIRS can be obtained in advance,so the proposed method has almost the same computational load as the traditional compensation method.In addition,the proposed method can perform well when the channel error exists.Computer simulation results verify the effectiveness of the proposed method.
文摘In response to the high requirements of industrial precision test, presenting a method of testing relative relation of space points was studied. The spatial-coordinate testing system was established by using high precision theodolites and horizontal staff. The related test was conducted with the use of the space intersection and the precision was evaluated based on the error of baseline. In the practical application of radar-development base, the relative relation of space points was implemented by using electronic theodolite and horizontal staff, which can be easily operated. Furthermore, it can be conveniently used to test small areas where the instruments are difficult to be installed and for high industrial requirements of precision test. The test results can fully meet the strict industrial requirements.
文摘We fix a counting function of multiplicities of algebraic points in a projective hypersurface over a number field, and take the sum over all algebraic points of bounded height and fixed degree. An upper bound for the sum with respect to this counting function will be given in terms of the degree of the hypersurface, the dimension of the singular locus, the upper bounds of height, and the degree of the field of definition.