The magnetic field is one of the most important parameters in solar physics,and a polarimeter is the key device to measure the solar magnetic field.Liquid crystals based Stokes polarimeter is a novel technology,and wi...The magnetic field is one of the most important parameters in solar physics,and a polarimeter is the key device to measure the solar magnetic field.Liquid crystals based Stokes polarimeter is a novel technology,and will be applied for magnetic field measurement in the first space-based solar observatory satellite developed by China,Advanced Space-based Solar Observatory.However,the liquid crystals based Stokes polarimeter in space is not a mature technology.Therefore,it is of great scientific significance to study the control method and characteristics of the device.The retardation produced by a liquid crystal variable retarder is sensitive to the temperature,and the retardation changes 0.09°per 0.10℃.The error in polarization measurement caused by this change is 0.016,which affects the accuracy of magnetic field measurement.In order to ensure the stability of its performance,this paper proposes a high-precision temperature control system for liquid crystals based Stokes polarimeter in space.In order to optimize the structure design and temperature control system,the temperature field of liquid crystals based Stokes polarimeter is analyzed by the finite element method,and the influence of light on the temperature field of the liquid crystal variable retarder is analyzed theoretically.By analyzing the principle of highprecision temperature measurement in space,a high-precision temperature measurement circuit based on integrated operational amplifier,programmable amplifier and 12 bit A/D is designed,and a high-precision space temperature control system is developed by applying the integral separation PI temperature control algorithm and PWM driving heating films.The experimental results show that the effect of temperature control is accurate and stable,whenever the liquid crystals based Stokes polarimeter is either in the air or vacuum.The temperature stability is within±0.0150℃,which demonstrates greatly improved stability for the liquid crystals based Stokes polarimeter.展开更多
The current highly competitive environment has driven industries to operate with increasingly restricted profit margins. Thus, it is imperative to optimize production processes. Faced with this scenario, multivariable...The current highly competitive environment has driven industries to operate with increasingly restricted profit margins. Thus, it is imperative to optimize production processes. Faced with this scenario, multivariable predictive control of processes has been presented as a powerful alternative to achieve these goals. Moreover, the rationale for implementation of advanced control and subsequent analysis of its post-match performance also focus on the benefits that this tool brings to the plant. It is therefore essential to establish a methodology for analysis, based on clear and measurable criteria. Currently, there are different methodologies available in the market to assist with such analysis. These tools can have a quantitative or qualitative focus. The aim of this study is to evaluate three of the best current main performance assessment technologies: Minimum Variance Control-Harris Index; Statistical Process Control (Cp and Cpk); and the Qin and Yu Index. These indexes were studied for an alumina plant controlled by three MPC (model predictive control) algorithms (GPC (generalized predictive control), RMPCT (robust multivariable predictive control technology) and ESSMPC (extended state space model predictive controller)) with different results.展开更多
In order to mitigate the effects of space adaptation syndrome(SAS) and improve the training efficiency of the astronauts, a novel astronaut rehabilitative training robot(ART) was proposed. ART can help the astronauts ...In order to mitigate the effects of space adaptation syndrome(SAS) and improve the training efficiency of the astronauts, a novel astronaut rehabilitative training robot(ART) was proposed. ART can help the astronauts to carry out the bench press training in the microgravity environment. Firstly, a dynamic model of cable driven unit(CDU) was established whose accuracy was verified through the model identification. Secondly, to improve the accuracy and the speed of the active loading, an active loading hybrid force controller was proposed on the basis of the dynamic model of the CDU. Finally, the actual effect of the hybrid force controller was tested by simulations and experiments. The results suggest that the hybrid force controller can significantly improve the precision and the dynamic performance of the active loading with the maximum phase lag of the active loading being 9° and the maximum amplitude error being 2% at the frequency range of 10 Hz. The controller can meet the design requirements.展开更多
In the realm of quadruped robot locomotion,compliance control is imperative to handle impacts when negotiating unstructured terrains.At the same time,kinematic tracking accuracy should be guaranteed during locomotion....In the realm of quadruped robot locomotion,compliance control is imperative to handle impacts when negotiating unstructured terrains.At the same time,kinematic tracking accuracy should be guaranteed during locomotion.To meet both demands,ajoint space compliance controller is designed,so that compliance can be achieved in stance phase while position tracking performance can be guaranteed in swing phase.Unlike operational space compliance control,the joint space compliance control method is easy to implement and does not depend on robot dynamics.As for each joint actuator,high performance force control is of great importance for compliance design.Therefore,a nonlinear PI controller based on feedback linearization is proposed for the hydraulic actuator force control.Besides,an outer position loop(compliance loop)is closed for each joint.Experiments are carried out to verify the force controller and compliance of the hydraulic actuator.The robot leg compliance is assessed by a virtual prototyping simulation.展开更多
A set of microphysics equations is scaled based on the convective length and velocity scales. Comparisons are made among the dynamical transport and various microphysical processes. From the scaling analysis, it becom...A set of microphysics equations is scaled based on the convective length and velocity scales. Comparisons are made among the dynamical transport and various microphysical processes. From the scaling analysis, it becomes apparent which parameterized microphysical processes present off-scaled influences in the integration of the set of microphysics equations. The variabilities of the parameterized microphysical processes are also studied using the approach of a controlled parameter space. Given macroscopic dynamic and thermodynamic conditions in different regions of convective storms, it is possible to analyze and compare vertical profiles of these processes. Bulk diabatic heating profiles for a cumulus convective updraft and downdraft are also derived from this analysis. From the two different angles, the scale analysis and the controlled-parameter space approach can both provide an insight into and an understanding of microphysics parameterizations.展开更多
Through a third⁃order mathematical model of grid⁃oriented LCL⁃type converters,this paper analyzes the complicated dynamic characteristics and resonance problems which may influence the system stability.To realize acti...Through a third⁃order mathematical model of grid⁃oriented LCL⁃type converters,this paper analyzes the complicated dynamic characteristics and resonance problems which may influence the system stability.To realize active damping for LCL filters and improve dynamic performance of current regulators,a state space current PI controller is proposed whose parameters can be tuned based on the polynomial equations approach.An extended state observer is integrated with the regulation scheme,where additional sensors are not necessary in contrast with conventional active damping strategies.Synchronous reference frame PLL(SRF⁃PLL)equipped with filter technology is proposed for grid voltage disturbance suppression.This method is then applied to establish a double⁃closed⁃loop power regulator that demonstrates improved performance compared with other controllers.The simulation results are displayed to illustrate the efficiency of the regulation methods.展开更多
Generally,the field of fixed point theory has attracted the attention of researchers in different fields of science and engineering due to its use in proving the existence and uniqueness of solutions of real-world dyn...Generally,the field of fixed point theory has attracted the attention of researchers in different fields of science and engineering due to its use in proving the existence and uniqueness of solutions of real-world dynamic models.C^(∗)-algebra is being continually used to explain a physical system in quantum field theory and statistical mechanics and has subsequently become an important area of research.The concept of a C^(∗)-algebra-valued metric space was introduced in 2014 to generalize the concept of metric space.In fact,It is a generalization by replacing the set of real numbers with a C^(∗)-algebra.After that,this line of research continued,where several fixed point results have been obtained in the framework of C^(∗)-algebra valued metric,aswell as(more general)C^(∗)-algebra-valued b-metric spaces andC^(∗)-algebra-valued extended b-metric spaces.Very recently,based on the concept and properties of C^(∗)-algebras,we have studied the quasi-case of such spaces to give a more general notion of relaxing the triangular inequality in the asymmetric case.In this paper,we first introduce the concept of C^(∗)-algebra-valued quasi-controlledK-metric spaces and prove some fixed point theorems that remain valid in this setting.To support our main results,we also furnish some exampleswhichdemonstrate theutility of ourmainresult.Finally,as an application,we useour results to prove the existence and uniqueness of the solution to a nonlinear stochastic integral equation.展开更多
Under the traditional mode of"incremental"development,urban development has bred urban problems such as lack of land resources,unbalanced distribution of public space,over development of land use,etc.The con...Under the traditional mode of"incremental"development,urban development has bred urban problems such as lack of land resources,unbalanced distribution of public space,over development of land use,etc.The concept of"stock renewal"is that the construction and development of a city changes from"extensive"construction to"refined"urban construction and management mode.Taking Yongchuan District’s regulatory detailed planning as an example,based on the concept of stock renewal as the guiding ideology of urban control planning,this study made corresponding strategies for the control planning of Yongchuan District’s mountain,water system,green space system,etc.On the basis of the problems of mountain encroachment,water bank erosion,lack of green space and safeguard mechanism,the protection and utilization planning of mountain,water and green were put forward,and safeguard mechanism in the process of planning and implementation was established,so as to provide specific guidance for the construction of Yongchuan central urban area,with a view to providing reference for the preparation and implementation of relevant regulatory detailed planning.展开更多
We present in this paper a survey of recent results on the relation between time and norm optimality for linear systems and the infinite dimensional version of Pontryagin's maximum principle. In particular, we discus...We present in this paper a survey of recent results on the relation between time and norm optimality for linear systems and the infinite dimensional version of Pontryagin's maximum principle. In particular, we discuss optimality (or nonoptimality) of singular controls satisfying the maximum principle and smoothness of the costate in function of smoothness of the target.展开更多
The space charge effect (SCE) of static induction transistor (SIT) that occurs in high current region is systematically studied.The I V equations are deduced and well agree with experimental results.Two kinds of ...The space charge effect (SCE) of static induction transistor (SIT) that occurs in high current region is systematically studied.The I V equations are deduced and well agree with experimental results.Two kinds of barriers are presented in SIT,corresponding to channel voltage barrier control (CVBC) mechanism and space charge limited control (SCLC) mechanism respectively.With the increase of drain voltage,the gradual transferring of operational mechanism from CVBC to SCLC is demonstrated.It points out that CVBC mechanism and its contest relationship with space charge barrier makes the SIT distinctly differentiated from JFET and triode devices,etc.The contest relationship of the two potential barriers also results in three different working regions,which are distinctly marked and analyzed.Furthermore,the extreme importance of grid voltage on SCE is illustrated.展开更多
The purpose of this paper is to establish sev eral identities containing Gaussian binomial coefficient. These results generali ze several Mercier's results. Key words:Gaussian binomial coefficient; identity; the ...The purpose of this paper is to establish sev eral identities containing Gaussian binomial coefficient. These results generali ze several Mercier's results. Key words:Gaussian binomial coefficient; identity; the functio n A(T,T 2,...,T n)culating eige nvalues of auto-correlation matrix of the physical control force of actuators. T he optimization algorithm calculating the optimal actuator placement is then put forward via the minimization of an energy criterion, which is chosen as the con trol index. Numerical examples show the effectiveness of the proposed method.展开更多
Temporal cavity solitons(CSs) have excellent properties that can sustain their shape in a temporal profile and with a broadband, smooth-frequency spectrum. We propose a method for controllable frequency line spacing...Temporal cavity solitons(CSs) have excellent properties that can sustain their shape in a temporal profile and with a broadband, smooth-frequency spectrum. We propose a method for controllable frequency line spacing soliton formation in a microresonator using two continuous-wave(CW) pumps with multi-free-spectral-range(FSR) spacing. The method we propose has better control over the amount and location of the solitons traveling in the cavity compared to the tuning pump method. We also find that by introducing a second pump with frequency N FSR from the first pump, solitons with N FSR comb spacing can be generated.展开更多
Mastering the influence laws of parameters on the solution structure of nonlinear systems is the basis of carrying out vibration isolation and control.Many researches on solution structure and bifurcation phenomenon i...Mastering the influence laws of parameters on the solution structure of nonlinear systems is the basis of carrying out vibration isolation and control.Many researches on solution structure and bifurcation phenomenon in parameter spaces are carried out broadly in many fields,and the research on nonlinear gear systems has attracted the attention of many scholars.But there is little study on the solution domain boundary of nonlinear gear systems.For a periodic non-autonomous nonlinear dynamic system with several control parameters,a solution domain boundary analysis method of nonlinear systems in parameter spaces is proposed,which combines the cell mapping method based on Poincaré point mapping in phase spaces with the domain decomposition technique of parameter spaces.The cell mapping is known as a global analysis method to analyze the global behavior of a nonlinear dynamic system with finite dimensions,and the basic idea of domain decomposition techniques is to divide and rule.The method is applied to analyze the solution domain boundaries in parameter spaces of a nonlinear gear system.The distribution of different period domains,chaos domain and the domain boundaries between different period domains and chaotic domain are obtained in control parameter spaces constituted by meshing damping ratio with excitation frequency,fluctuation coefficient of meshing stiffness and average exciting force respectively by calculation.The calculation results show that as the meshing damping increases,the responses of the system change towards a single motion,while the variations of the excitation frequency,meshing stiffness and exciting force make the solution domain presenting diversity.The proposed research contribution provides evidence for vibration control and parameter design of the gear system,and confirms the validity of the solution domain boundary analysis method.展开更多
Data warehouse (DW), a new technology invented in 1990s, is more useful for integrating and analyzing massive data than traditional database. Its application in geology field can be divided into 3 phrases: 1992-1996,...Data warehouse (DW), a new technology invented in 1990s, is more useful for integrating and analyzing massive data than traditional database. Its application in geology field can be divided into 3 phrases: 1992-1996, commercial data warehouse (CDW) appeared; 1996-1999, geological data warehouse (GDW) appeared and the geologists or geographers realized the importance of DW and began the studies on it, but the practical DW still followed the framework of DB; 2000 to present, geological data warehouse grows, and the theory of geo-spatial data warehouse (GSDW) has been developed but the research in geological area is still deficient except that in geography. Although some developments of GDW have been made, its core still follows the CDW-organizing data by time and brings about 3 problems: difficult to integrate the geological data, for the data feature more space than time; hard to store the massive data in different levels due to the same reason; hardly support the spatial analysis if the data are organized by time as CDW does. So the GDW should be redesigned by organizing data by scale in order to store mass data in different levels and synthesize the data in different granularities, and choosing space control points to replace the former time control points so as to integrate different types of data by the method of storing one type data as one layer and then to superpose the layers. In addition, data cube, a wide used technology in CDW, will be no use in GDW, for the causality among the geological data is not so obvious as commercial data, as the data are the mixed result of many complex rules, and their analysis always needs the special geological methods and software; on the other hand, data cube for mass and complex geo-data will devour too much store space to be practical. On this point, the main purpose of GDW may be fit for data integration unlike CDW for data analysis.展开更多
When spacecraft operate in space,most organic materials will release small molecular hydrocarbons and large molecular organic gases due to gas evolution effect under high vacuum conditions.These gases can deposit on t...When spacecraft operate in space,most organic materials will release small molecular hydrocarbons and large molecular organic gases due to gas evolution effect under high vacuum conditions.These gases can deposit on the surface of spacecraft,adversely affecting its performance.Adsorption becomes the first choice for removing such organic pollutants in the space environment.Zeolite material has a stable and dense porous structure,and has been widely used in the field of pollution adsorption.In this work,Al2O3 was deposited on the surfaces of 5A zeolite for the first time by atomic layer deposition(ALD)technology.As a result,the adsorption performance of Al2O3 coated 5A zeolite(zeolite@Al2O3)was significantly modified.The corresponding adsorption process was clarified via adsorption kinetics study.展开更多
This paper discusses the reservoir space in carbonate rocks in terms of types,combination features,distribution regularity,and controlling factors,based on core observations and tests of the North Truva Oilfield,Caspi...This paper discusses the reservoir space in carbonate rocks in terms of types,combination features,distribution regularity,and controlling factors,based on core observations and tests of the North Truva Oilfield,Caspian Basin.According to the reservoir space combinations,carbonate reservoirs can be divided into four types,i.e.,pore,fracture-pore,pore-cavity-fracture,and pore-cavity.Formation and distribution of these reservoirs is strongly controlled by deposition,diagenesis,and tectonism.In evaporated platform and restricted platform facies,the reservoirs are predominately affected by meteoric fresh water leaching in the supergene-para-syngenetic period and by uplifting and erosion in the late stage,making both platform facies contain all the above-mentioned four types of reservoirs,with various pores,such as dissolved cavities and dissolved fractures,or structural fractures occasionally in favorable structural locations.In open platform facies,the reservoirs deposited continuously in deeper water,in an environment of alternative high-energy shoals(where pore-fracture-type reservoirs are dominant) and low-energy shoals(where pore reservoirs are dominant).展开更多
With the support by the National Natural Science Foundation of China,a collaborative study by the research groups led by Prof.Fang Haiping(方海平)from Shanghai Institute of Applied Physics,Chinese Academy of Sciences,...With the support by the National Natural Science Foundation of China,a collaborative study by the research groups led by Prof.Fang Haiping(方海平)from Shanghai Institute of Applied Physics,Chinese Academy of Sciences,Prof.Wu Minghong(吴明红)from Shanghai Applied Radiation Institute。展开更多
Commissioning of P/PI-cascade controlled servo axes with flexible load can be quite time consuming, if the step response based setup procedures are applied for the velocity controller as indicated by the automation sy...Commissioning of P/PI-cascade controlled servo axes with flexible load can be quite time consuming, if the step response based setup procedures are applied for the velocity controller as indicated by the automation systems manufacturers. Based on the drive frequency response, suitable rules of thumb with optimum velocity control damping performance are derived in this contribution that turned out to be very efficient in several dozen machine tool servo axis applications of different industrial partners in Switzerland and southern Germany. Anyway, single feedback loop velocity control sometimes provides insufficient damping of structural vibrations, especially for high dynamic machine tools or robots. The axis performance can be improved significantly by state space control extensions that are meanwhile available for commercial machine tool control systems. This contribution explains the state space control extension application with effective commissioning rules of thumb for typical machine tool axes as well as robot joint drives. The achievable benefit is elucidated by exemplary machine tool axes.展开更多
Background:The Space Glucose Control (SGC) system is a computer-assisted device combining infusion pumps with the enhanced Model Predictive Control algorithm to achieve the target blood glucose (BG) level safely....Background:The Space Glucose Control (SGC) system is a computer-assisted device combining infusion pumps with the enhanced Model Predictive Control algorithm to achieve the target blood glucose (BG) level safely.The objective of this study was to evaluate the efficacy and safety of glycemic control by SGC with customized BG target range of 5.8-8.9 mmol/L in the critically ill patients.Methods:It is a randomized controlled trial of seventy critically ill patients with mechanical ventilation and hyperglycemia (BG 〉 9.0 mmol/L).Thirty-six patients in the SGC group and 34 in the routine glucose management group were observed for three consecutive days.Target BG for both groups was 5.8-8.9 mmol/L.The primary outcome was the percentage time in the target range.Results:The percentage time within BG target range in the SGC group (69 ± 15%) was significantly higher than in the routine management group (52 ± 24%;P 〈 0.01).No measurement was 〈2.2 mmol/L,and there was only one episode of hypoglycemia (2.3-3.3 mmol/L) in each group.The average BG was significantly lower in the SGC group (7.8 ± 0.7 mmol/L) than in the routine management group (9.1 ± 1.6 mmol/L,P 〈 0.001).Target BG level was reached earlier in the SGC group than routine management group (2.5 ± 2.9 vs.12.1 ± 15.3 h,P =0.001).However,the SGC group performed worse for daily insulin requirement (59.8 ± 39.3 vs.28.4 ± 36.7 U,P =0.001)and sampling interval (2.0 ± 0.5 vs.3.7 ± 0.5 h,P 〈 0.001) than the routine management group did.Multiple linear regression showed that the intervention group remained a significant individual predictor (P 〈 0.001) of the percentage time in target range.Conclusions:The SGC system,with a BG target of 5.8-8.9 mmol/L,resulted in effective and reliable glycemic control with few hypoglycemic episodes in critically ill patients with mechanical ventilation and hyperglycemia.However,the workload was increased.Trial Registration:http://www.clinicaltrials.gov,NCT 02491346;https://www.clinicaltrials.gov/ct2/show/NCT02491346?term=NCT0 2491346&cond=Hyperglycemia&cntry1=ES%3ACN&rank=1.展开更多
Space robot is assembled and tested in gravity environment, and completes on-orbit service(OOS) in microgravity environment. The kinematic and dynamic characteristic of the robot will change with the variations of g...Space robot is assembled and tested in gravity environment, and completes on-orbit service(OOS) in microgravity environment. The kinematic and dynamic characteristic of the robot will change with the variations of gravity in different working condition. Fully considering the change of kinematic and dynamic models caused by the change of gravity environment, a fuzzy adaptive robust control(FARC) strategy which is adaptive to these model variations is put forward for trajectory tracking control of space robot. A fuzzy algorithm is employed to approximate the nonlinear uncertainties in the model, adaptive laws of the parameters are constructed, and the approximation error is compensated by using a robust control algorithm. The stability of the control system is guaranteed based on the Lyapunov theory and the trajectory tracking control simulation is performed. The simulation results are compared with the proportional plus derivative(PD) controller, and the effectiveness to achieve better trajectory tracking performance under different gravity environment without changing the control parameters and the advantage of the proposed controller are verified.展开更多
基金the National Natural Science Foundation of China(Grant Nos.11427803,11427901 and 11773040)the Strategic Pioneer Program on Space Science,Chinese Academy of Sciences(CAS)(XDA04061002 and XDA15010800)the Public Technology Service Center,National Astronomical Observatories of CAS(829011V01)。
文摘The magnetic field is one of the most important parameters in solar physics,and a polarimeter is the key device to measure the solar magnetic field.Liquid crystals based Stokes polarimeter is a novel technology,and will be applied for magnetic field measurement in the first space-based solar observatory satellite developed by China,Advanced Space-based Solar Observatory.However,the liquid crystals based Stokes polarimeter in space is not a mature technology.Therefore,it is of great scientific significance to study the control method and characteristics of the device.The retardation produced by a liquid crystal variable retarder is sensitive to the temperature,and the retardation changes 0.09°per 0.10℃.The error in polarization measurement caused by this change is 0.016,which affects the accuracy of magnetic field measurement.In order to ensure the stability of its performance,this paper proposes a high-precision temperature control system for liquid crystals based Stokes polarimeter in space.In order to optimize the structure design and temperature control system,the temperature field of liquid crystals based Stokes polarimeter is analyzed by the finite element method,and the influence of light on the temperature field of the liquid crystal variable retarder is analyzed theoretically.By analyzing the principle of highprecision temperature measurement in space,a high-precision temperature measurement circuit based on integrated operational amplifier,programmable amplifier and 12 bit A/D is designed,and a high-precision space temperature control system is developed by applying the integral separation PI temperature control algorithm and PWM driving heating films.The experimental results show that the effect of temperature control is accurate and stable,whenever the liquid crystals based Stokes polarimeter is either in the air or vacuum.The temperature stability is within±0.0150℃,which demonstrates greatly improved stability for the liquid crystals based Stokes polarimeter.
文摘The current highly competitive environment has driven industries to operate with increasingly restricted profit margins. Thus, it is imperative to optimize production processes. Faced with this scenario, multivariable predictive control of processes has been presented as a powerful alternative to achieve these goals. Moreover, the rationale for implementation of advanced control and subsequent analysis of its post-match performance also focus on the benefits that this tool brings to the plant. It is therefore essential to establish a methodology for analysis, based on clear and measurable criteria. Currently, there are different methodologies available in the market to assist with such analysis. These tools can have a quantitative or qualitative focus. The aim of this study is to evaluate three of the best current main performance assessment technologies: Minimum Variance Control-Harris Index; Statistical Process Control (Cp and Cpk); and the Qin and Yu Index. These indexes were studied for an alumina plant controlled by three MPC (model predictive control) algorithms (GPC (generalized predictive control), RMPCT (robust multivariable predictive control technology) and ESSMPC (extended state space model predictive controller)) with different results.
基金Project(61175128) supported by the National Natural Science Foundation of ChinaProject(2008AA040203) supported by the National High Technology Research and Development Program of ChinaProject(QC2010009) supported by the Natural Science Foundation of Heilongjiang Province,China
文摘In order to mitigate the effects of space adaptation syndrome(SAS) and improve the training efficiency of the astronauts, a novel astronaut rehabilitative training robot(ART) was proposed. ART can help the astronauts to carry out the bench press training in the microgravity environment. Firstly, a dynamic model of cable driven unit(CDU) was established whose accuracy was verified through the model identification. Secondly, to improve the accuracy and the speed of the active loading, an active loading hybrid force controller was proposed on the basis of the dynamic model of the CDU. Finally, the actual effect of the hybrid force controller was tested by simulations and experiments. The results suggest that the hybrid force controller can significantly improve the precision and the dynamic performance of the active loading with the maximum phase lag of the active loading being 9° and the maximum amplitude error being 2% at the frequency range of 10 Hz. The controller can meet the design requirements.
基金Supported by the National High Technology Research and Development Program of China(863 Program)(2011AA041002)
文摘In the realm of quadruped robot locomotion,compliance control is imperative to handle impacts when negotiating unstructured terrains.At the same time,kinematic tracking accuracy should be guaranteed during locomotion.To meet both demands,ajoint space compliance controller is designed,so that compliance can be achieved in stance phase while position tracking performance can be guaranteed in swing phase.Unlike operational space compliance control,the joint space compliance control method is easy to implement and does not depend on robot dynamics.As for each joint actuator,high performance force control is of great importance for compliance design.Therefore,a nonlinear PI controller based on feedback linearization is proposed for the hydraulic actuator force control.Besides,an outer position loop(compliance loop)is closed for each joint.Experiments are carried out to verify the force controller and compliance of the hydraulic actuator.The robot leg compliance is assessed by a virtual prototyping simulation.
基金Acknowledgments. Thanks to Dr. Alexander MacDonald of NOAA/FSL for his support throughout this study, and to Professors William Cotton. Roger Pielke. Wayne Schubert of Colorado State University, and to Dr. Fanyou Kong of University of Oklahoma and Mr. Hu
文摘A set of microphysics equations is scaled based on the convective length and velocity scales. Comparisons are made among the dynamical transport and various microphysical processes. From the scaling analysis, it becomes apparent which parameterized microphysical processes present off-scaled influences in the integration of the set of microphysics equations. The variabilities of the parameterized microphysical processes are also studied using the approach of a controlled parameter space. Given macroscopic dynamic and thermodynamic conditions in different regions of convective storms, it is possible to analyze and compare vertical profiles of these processes. Bulk diabatic heating profiles for a cumulus convective updraft and downdraft are also derived from this analysis. From the two different angles, the scale analysis and the controlled-parameter space approach can both provide an insight into and an understanding of microphysics parameterizations.
文摘Through a third⁃order mathematical model of grid⁃oriented LCL⁃type converters,this paper analyzes the complicated dynamic characteristics and resonance problems which may influence the system stability.To realize active damping for LCL filters and improve dynamic performance of current regulators,a state space current PI controller is proposed whose parameters can be tuned based on the polynomial equations approach.An extended state observer is integrated with the regulation scheme,where additional sensors are not necessary in contrast with conventional active damping strategies.Synchronous reference frame PLL(SRF⁃PLL)equipped with filter technology is proposed for grid voltage disturbance suppression.This method is then applied to establish a double⁃closed⁃loop power regulator that demonstrates improved performance compared with other controllers.The simulation results are displayed to illustrate the efficiency of the regulation methods.
文摘Generally,the field of fixed point theory has attracted the attention of researchers in different fields of science and engineering due to its use in proving the existence and uniqueness of solutions of real-world dynamic models.C^(∗)-algebra is being continually used to explain a physical system in quantum field theory and statistical mechanics and has subsequently become an important area of research.The concept of a C^(∗)-algebra-valued metric space was introduced in 2014 to generalize the concept of metric space.In fact,It is a generalization by replacing the set of real numbers with a C^(∗)-algebra.After that,this line of research continued,where several fixed point results have been obtained in the framework of C^(∗)-algebra valued metric,aswell as(more general)C^(∗)-algebra-valued b-metric spaces andC^(∗)-algebra-valued extended b-metric spaces.Very recently,based on the concept and properties of C^(∗)-algebras,we have studied the quasi-case of such spaces to give a more general notion of relaxing the triangular inequality in the asymmetric case.In this paper,we first introduce the concept of C^(∗)-algebra-valued quasi-controlledK-metric spaces and prove some fixed point theorems that remain valid in this setting.To support our main results,we also furnish some exampleswhichdemonstrate theutility of ourmainresult.Finally,as an application,we useour results to prove the existence and uniqueness of the solution to a nonlinear stochastic integral equation.
基金Social Science Planning Project of Chongqing(2019YBSH085)Graduate Education Innovation Fund Project of Chongqing Jiaotong University(2019S01012018S0143).
文摘Under the traditional mode of"incremental"development,urban development has bred urban problems such as lack of land resources,unbalanced distribution of public space,over development of land use,etc.The concept of"stock renewal"is that the construction and development of a city changes from"extensive"construction to"refined"urban construction and management mode.Taking Yongchuan District’s regulatory detailed planning as an example,based on the concept of stock renewal as the guiding ideology of urban control planning,this study made corresponding strategies for the control planning of Yongchuan District’s mountain,water system,green space system,etc.On the basis of the problems of mountain encroachment,water bank erosion,lack of green space and safeguard mechanism,the protection and utilization planning of mountain,water and green were put forward,and safeguard mechanism in the process of planning and implementation was established,so as to provide specific guidance for the construction of Yongchuan central urban area,with a view to providing reference for the preparation and implementation of relevant regulatory detailed planning.
文摘We present in this paper a survey of recent results on the relation between time and norm optimality for linear systems and the infinite dimensional version of Pontryagin's maximum principle. In particular, we discuss optimality (or nonoptimality) of singular controls satisfying the maximum principle and smoothness of the costate in function of smoothness of the target.
文摘The space charge effect (SCE) of static induction transistor (SIT) that occurs in high current region is systematically studied.The I V equations are deduced and well agree with experimental results.Two kinds of barriers are presented in SIT,corresponding to channel voltage barrier control (CVBC) mechanism and space charge limited control (SCLC) mechanism respectively.With the increase of drain voltage,the gradual transferring of operational mechanism from CVBC to SCLC is demonstrated.It points out that CVBC mechanism and its contest relationship with space charge barrier makes the SIT distinctly differentiated from JFET and triode devices,etc.The contest relationship of the two potential barriers also results in three different working regions,which are distinctly marked and analyzed.Furthermore,the extreme importance of grid voltage on SCE is illustrated.
文摘The purpose of this paper is to establish sev eral identities containing Gaussian binomial coefficient. These results generali ze several Mercier's results. Key words:Gaussian binomial coefficient; identity; the functio n A(T,T 2,...,T n)culating eige nvalues of auto-correlation matrix of the physical control force of actuators. T he optimization algorithm calculating the optimal actuator placement is then put forward via the minimization of an energy criterion, which is chosen as the con trol index. Numerical examples show the effectiveness of the proposed method.
基金supported by the National Natural Science Foundation of China (Grant Nos. 61475099, 61102053, 61378012, and 11574092)the Program of State Key Laboratory of Quantum Optics and Quantum Optics Devices (No. KF201405)the Open Fund of IPOC (BUPT) (No: IPOC2015B004)
文摘Temporal cavity solitons(CSs) have excellent properties that can sustain their shape in a temporal profile and with a broadband, smooth-frequency spectrum. We propose a method for controllable frequency line spacing soliton formation in a microresonator using two continuous-wave(CW) pumps with multi-free-spectral-range(FSR) spacing. The method we propose has better control over the amount and location of the solitons traveling in the cavity compared to the tuning pump method. We also find that by introducing a second pump with frequency N FSR from the first pump, solitons with N FSR comb spacing can be generated.
基金supported by National Hi-tech Research and Development Program of China (863 Program,Grant No.2009AA04Z404)
文摘Mastering the influence laws of parameters on the solution structure of nonlinear systems is the basis of carrying out vibration isolation and control.Many researches on solution structure and bifurcation phenomenon in parameter spaces are carried out broadly in many fields,and the research on nonlinear gear systems has attracted the attention of many scholars.But there is little study on the solution domain boundary of nonlinear gear systems.For a periodic non-autonomous nonlinear dynamic system with several control parameters,a solution domain boundary analysis method of nonlinear systems in parameter spaces is proposed,which combines the cell mapping method based on Poincaré point mapping in phase spaces with the domain decomposition technique of parameter spaces.The cell mapping is known as a global analysis method to analyze the global behavior of a nonlinear dynamic system with finite dimensions,and the basic idea of domain decomposition techniques is to divide and rule.The method is applied to analyze the solution domain boundaries in parameter spaces of a nonlinear gear system.The distribution of different period domains,chaos domain and the domain boundaries between different period domains and chaotic domain are obtained in control parameter spaces constituted by meshing damping ratio with excitation frequency,fluctuation coefficient of meshing stiffness and average exciting force respectively by calculation.The calculation results show that as the meshing damping increases,the responses of the system change towards a single motion,while the variations of the excitation frequency,meshing stiffness and exciting force make the solution domain presenting diversity.The proposed research contribution provides evidence for vibration control and parameter design of the gear system,and confirms the validity of the solution domain boundary analysis method.
文摘Data warehouse (DW), a new technology invented in 1990s, is more useful for integrating and analyzing massive data than traditional database. Its application in geology field can be divided into 3 phrases: 1992-1996, commercial data warehouse (CDW) appeared; 1996-1999, geological data warehouse (GDW) appeared and the geologists or geographers realized the importance of DW and began the studies on it, but the practical DW still followed the framework of DB; 2000 to present, geological data warehouse grows, and the theory of geo-spatial data warehouse (GSDW) has been developed but the research in geological area is still deficient except that in geography. Although some developments of GDW have been made, its core still follows the CDW-organizing data by time and brings about 3 problems: difficult to integrate the geological data, for the data feature more space than time; hard to store the massive data in different levels due to the same reason; hardly support the spatial analysis if the data are organized by time as CDW does. So the GDW should be redesigned by organizing data by scale in order to store mass data in different levels and synthesize the data in different granularities, and choosing space control points to replace the former time control points so as to integrate different types of data by the method of storing one type data as one layer and then to superpose the layers. In addition, data cube, a wide used technology in CDW, will be no use in GDW, for the causality among the geological data is not so obvious as commercial data, as the data are the mixed result of many complex rules, and their analysis always needs the special geological methods and software; on the other hand, data cube for mass and complex geo-data will devour too much store space to be practical. On this point, the main purpose of GDW may be fit for data integration unlike CDW for data analysis.
基金National Natural Science Foundation of China(Grant No.51702067).
文摘When spacecraft operate in space,most organic materials will release small molecular hydrocarbons and large molecular organic gases due to gas evolution effect under high vacuum conditions.These gases can deposit on the surface of spacecraft,adversely affecting its performance.Adsorption becomes the first choice for removing such organic pollutants in the space environment.Zeolite material has a stable and dense porous structure,and has been widely used in the field of pollution adsorption.In this work,Al2O3 was deposited on the surfaces of 5A zeolite for the first time by atomic layer deposition(ALD)technology.As a result,the adsorption performance of Al2O3 coated 5A zeolite(zeolite@Al2O3)was significantly modified.The corresponding adsorption process was clarified via adsorption kinetics study.
基金supported by the National Major Science and Technology Project (No.2016ZX05030002)
文摘This paper discusses the reservoir space in carbonate rocks in terms of types,combination features,distribution regularity,and controlling factors,based on core observations and tests of the North Truva Oilfield,Caspian Basin.According to the reservoir space combinations,carbonate reservoirs can be divided into four types,i.e.,pore,fracture-pore,pore-cavity-fracture,and pore-cavity.Formation and distribution of these reservoirs is strongly controlled by deposition,diagenesis,and tectonism.In evaporated platform and restricted platform facies,the reservoirs are predominately affected by meteoric fresh water leaching in the supergene-para-syngenetic period and by uplifting and erosion in the late stage,making both platform facies contain all the above-mentioned four types of reservoirs,with various pores,such as dissolved cavities and dissolved fractures,or structural fractures occasionally in favorable structural locations.In open platform facies,the reservoirs deposited continuously in deeper water,in an environment of alternative high-energy shoals(where pore-fracture-type reservoirs are dominant) and low-energy shoals(where pore reservoirs are dominant).
文摘With the support by the National Natural Science Foundation of China,a collaborative study by the research groups led by Prof.Fang Haiping(方海平)from Shanghai Institute of Applied Physics,Chinese Academy of Sciences,Prof.Wu Minghong(吴明红)from Shanghai Applied Radiation Institute。
文摘Commissioning of P/PI-cascade controlled servo axes with flexible load can be quite time consuming, if the step response based setup procedures are applied for the velocity controller as indicated by the automation systems manufacturers. Based on the drive frequency response, suitable rules of thumb with optimum velocity control damping performance are derived in this contribution that turned out to be very efficient in several dozen machine tool servo axis applications of different industrial partners in Switzerland and southern Germany. Anyway, single feedback loop velocity control sometimes provides insufficient damping of structural vibrations, especially for high dynamic machine tools or robots. The axis performance can be improved significantly by state space control extensions that are meanwhile available for commercial machine tool control systems. This contribution explains the state space control extension application with effective commissioning rules of thumb for typical machine tool axes as well as robot joint drives. The achievable benefit is elucidated by exemplary machine tool axes.
文摘Background:The Space Glucose Control (SGC) system is a computer-assisted device combining infusion pumps with the enhanced Model Predictive Control algorithm to achieve the target blood glucose (BG) level safely.The objective of this study was to evaluate the efficacy and safety of glycemic control by SGC with customized BG target range of 5.8-8.9 mmol/L in the critically ill patients.Methods:It is a randomized controlled trial of seventy critically ill patients with mechanical ventilation and hyperglycemia (BG 〉 9.0 mmol/L).Thirty-six patients in the SGC group and 34 in the routine glucose management group were observed for three consecutive days.Target BG for both groups was 5.8-8.9 mmol/L.The primary outcome was the percentage time in the target range.Results:The percentage time within BG target range in the SGC group (69 ± 15%) was significantly higher than in the routine management group (52 ± 24%;P 〈 0.01).No measurement was 〈2.2 mmol/L,and there was only one episode of hypoglycemia (2.3-3.3 mmol/L) in each group.The average BG was significantly lower in the SGC group (7.8 ± 0.7 mmol/L) than in the routine management group (9.1 ± 1.6 mmol/L,P 〈 0.001).Target BG level was reached earlier in the SGC group than routine management group (2.5 ± 2.9 vs.12.1 ± 15.3 h,P =0.001).However,the SGC group performed worse for daily insulin requirement (59.8 ± 39.3 vs.28.4 ± 36.7 U,P =0.001)and sampling interval (2.0 ± 0.5 vs.3.7 ± 0.5 h,P 〈 0.001) than the routine management group did.Multiple linear regression showed that the intervention group remained a significant individual predictor (P 〈 0.001) of the percentage time in target range.Conclusions:The SGC system,with a BG target of 5.8-8.9 mmol/L,resulted in effective and reliable glycemic control with few hypoglycemic episodes in critically ill patients with mechanical ventilation and hyperglycemia.However,the workload was increased.Trial Registration:http://www.clinicaltrials.gov,NCT 02491346;https://www.clinicaltrials.gov/ct2/show/NCT02491346?term=NCT0 2491346&cond=Hyperglycemia&cntry1=ES%3ACN&rank=1.
基金supported by the National High-tech Research and Development Program of China
文摘Space robot is assembled and tested in gravity environment, and completes on-orbit service(OOS) in microgravity environment. The kinematic and dynamic characteristic of the robot will change with the variations of gravity in different working condition. Fully considering the change of kinematic and dynamic models caused by the change of gravity environment, a fuzzy adaptive robust control(FARC) strategy which is adaptive to these model variations is put forward for trajectory tracking control of space robot. A fuzzy algorithm is employed to approximate the nonlinear uncertainties in the model, adaptive laws of the parameters are constructed, and the approximation error is compensated by using a robust control algorithm. The stability of the control system is guaranteed based on the Lyapunov theory and the trajectory tracking control simulation is performed. The simulation results are compared with the proportional plus derivative(PD) controller, and the effectiveness to achieve better trajectory tracking performance under different gravity environment without changing the control parameters and the advantage of the proposed controller are verified.