An evaluation method of engine cyclic variation is proposed based on fuzzy mathematics concept. The degree of engine cyclic variation is divided into 4 levels: stable, slight variation, moderate variation and serious ...An evaluation method of engine cyclic variation is proposed based on fuzzy mathematics concept. The degree of engine cyclic variation is divided into 4 levels: stable, slight variation, moderate variation and serious variation based on the statistic standard deviation of residual gas temperatures within the specified simulation cycles and the function of cyclic variation is also inducted for the cyclic variation control. Because the degree of engine cyclic variation can be estimated qualitatively, the effective control means can be applied to appease the undesired cyclic variation. Simulation result shows that for a very serious cyclic variation through the proper adjustment of the spark angle and the cyclic variation will disappear.展开更多
依托船舶自动识别系统(Automatic Identification System,AIS)数据,利用云计算并结合聚类算法,对船舶历史数据进行轨迹聚类分析,构建船舶航行正常轨迹模型,为实时检测船舶异常轨迹奠定基础,进而为提高水上交通监管智能化水平提供新方法...依托船舶自动识别系统(Automatic Identification System,AIS)数据,利用云计算并结合聚类算法,对船舶历史数据进行轨迹聚类分析,构建船舶航行正常轨迹模型,为实时检测船舶异常轨迹奠定基础,进而为提高水上交通监管智能化水平提供新方法。针对目前轨迹聚类算法效率低等问题,基于Spark内存计算技术及数据分区思想,提出一种改进的并行子轨迹聚类算法SPDBSCANST(Parallel DBSCAN of Sub Trajectory Based on Spark)。以长江航道武汉段船舶航行数据为例进行试验验证,并通过可视化方式呈现。结果表明,改进后的算法的聚类效率和效果都有明显提升。展开更多
文摘An evaluation method of engine cyclic variation is proposed based on fuzzy mathematics concept. The degree of engine cyclic variation is divided into 4 levels: stable, slight variation, moderate variation and serious variation based on the statistic standard deviation of residual gas temperatures within the specified simulation cycles and the function of cyclic variation is also inducted for the cyclic variation control. Because the degree of engine cyclic variation can be estimated qualitatively, the effective control means can be applied to appease the undesired cyclic variation. Simulation result shows that for a very serious cyclic variation through the proper adjustment of the spark angle and the cyclic variation will disappear.
文摘依托船舶自动识别系统(Automatic Identification System,AIS)数据,利用云计算并结合聚类算法,对船舶历史数据进行轨迹聚类分析,构建船舶航行正常轨迹模型,为实时检测船舶异常轨迹奠定基础,进而为提高水上交通监管智能化水平提供新方法。针对目前轨迹聚类算法效率低等问题,基于Spark内存计算技术及数据分区思想,提出一种改进的并行子轨迹聚类算法SPDBSCANST(Parallel DBSCAN of Sub Trajectory Based on Spark)。以长江航道武汉段船舶航行数据为例进行试验验证,并通过可视化方式呈现。结果表明,改进后的算法的聚类效率和效果都有明显提升。