Principal Component Analysis (PCA) is a widely used technique for data analysis and dimensionality reduction, but its sensitivity to feature scale and outliers limits its applicability. Robust Principal Component Anal...Principal Component Analysis (PCA) is a widely used technique for data analysis and dimensionality reduction, but its sensitivity to feature scale and outliers limits its applicability. Robust Principal Component Analysis (RPCA) addresses these limitations by decomposing data into a low-rank matrix capturing the underlying structure and a sparse matrix identifying outliers, enhancing robustness against noise and outliers. This paper introduces a novel RPCA variant, Robust PCA Integrating Sparse and Low-rank Priors (RPCA-SL). Each prior targets a specific aspect of the data’s underlying structure and their combination allows for a more nuanced and accurate separation of the main data components from outliers and noise. Then RPCA-SL is solved by employing a proximal gradient algorithm for improved anomaly detection and data decomposition. Experimental results on simulation and real data demonstrate significant advancements.展开更多
The spaceborne synthetic aperture radar(SAR)sparse flight 3-D imaging technology through multiple observations of the cross-track direction is designed to form the cross-track equivalent aperture,and achieve the third...The spaceborne synthetic aperture radar(SAR)sparse flight 3-D imaging technology through multiple observations of the cross-track direction is designed to form the cross-track equivalent aperture,and achieve the third dimensionality recognition.In this paper,combined with the actual triple star orbits,a sparse flight spaceborne SAR 3-D imaging method based on the sparse spectrum of interferometry and the principal component analysis(PCA)is presented.Firstly,interferometric processing is utilized to reach an effective sparse representation of radar images in the frequency domain.Secondly,as a method with simple principle and fast calculation,the PCA is introduced to extract the main features of the image spectrum according to its principal characteristics.Finally,the 3-D image can be obtained by inverse transformation of the reconstructed spectrum by the PCA.The simulation results of 4.84 km equivalent cross-track aperture and corresponding 1.78 m cross-track resolution verify the effective suppression of this method on high-frequency sidelobe noise introduced by sparse flight with a sparsity of 49%and random noise introduced by the receiver.Meanwhile,due to the influence of orbit distribution of the actual triple star orbits,the simulation results of the sparse flight with the 7-bit Barker code orbits are given as a comparison and reference to illuminate the significance of orbit distribution for this reconstruction results.This method has prospects for sparse flight 3-D imaging in high latitude areas for its short revisit period.展开更多
Signals can be sampled by compressive sensing theory with a much less rate than those by traditional Nyquist sampling theorem,and reconstructed with high probability,only when signals are sparse in the time domain or ...Signals can be sampled by compressive sensing theory with a much less rate than those by traditional Nyquist sampling theorem,and reconstructed with high probability,only when signals are sparse in the time domain or a transform domain.Most signals are not sparse in real world,but can be expressed in sparse form by some kind of sparse transformation.Commonly used sparse transformations will lose some information,because their transform bases are generally fixed.In this paper,we use principal component analysis for data reduction,and select new variable with low dimension and linearly correlated to the original variable,instead of the original variable with high dimension,thus the useful data of the original signals can be included in the sparse signals after dimensionality reduction with maximize portability.Therefore,the loss of data can be reduced as much as possible,and the efficiency of signal reconstruction can be improved.Finally,the composite material plate is used for the experimental verification.The experimental result shows that the sparse representation of signals based on principal component analysis can reduce signal distortion and improve signal reconstruction efficiency.展开更多
Ground roll is an interference wave that severely degrades the signal-to-noise ratio of seismic data and affects its subsequent processing and interpretation.In this study,according to differences in morphological cha...Ground roll is an interference wave that severely degrades the signal-to-noise ratio of seismic data and affects its subsequent processing and interpretation.In this study,according to differences in morphological characteristics between ground roll and reflected waves,we use morphological component analysis based on two-dimensional dictionaries to separate ground roll and reflected waves.Because ground roll is characterized by lowfrequency,low-velocity,and dispersion,we select two-dimensional undecimated discrete wavelet transform as a sparse representation dictionary of ground roll.Because of a strong local correlation of the reflected wave,we select two-dimensional local discrete cosine transform as the sparse representation dictionary of reflected waves.A sparse representation model of seismic data is constructed based on a two-dimensional joint dictionary then a block coordinate relaxation algorithm is used to solve the model and decompose seismic record into reflected wave part and ground roll part.The good effects for the synthetic seismic data and application of real seismic data indicate that when using the model,strong-energy ground roll is considerably suppressed and the waveform of the reflected wave is effectively protected.展开更多
Text in natural scene images usually carries abundant semantic information. However, due to variations of text and complexity of background, detecting text in scene images becomes a critical and challenging task. In t...Text in natural scene images usually carries abundant semantic information. However, due to variations of text and complexity of background, detecting text in scene images becomes a critical and challenging task. In this paper, we present a novel method to detect text from scene images. Firstly, we decompose scene images into background and text components using morphological component analysis(MCA), which will reduce the adverse effects of complex backgrounds on the detection results.In order to improve the performance of image decomposition,two discriminative dictionaries of background and text are learned from the training samples. Moreover, Laplacian sparse regularization is introduced into our proposed dictionary learning method which improves discrimination of dictionary. Based on the text dictionary and the sparse-representation coefficients of text, we can construct the text component. After that, the text in the query image can be detected by applying certain heuristic rules. The results of experiments show the effectiveness of the proposed method.展开更多
Morphological component analysis( MCA) is a signal separation method based on signal morphological diversity and sparse representation. MCA can extract the signal components of different morphologies by different dict...Morphological component analysis( MCA) is a signal separation method based on signal morphological diversity and sparse representation. MCA can extract the signal components of different morphologies by different dictionary combinations. Firstly,the theory of MCA was analyzed with sparse representation principle and relaxation criterion. Then detailed steps of block coordinate relaxation( BCR) were given. Finally,algorithm performance was verified by simulation signals analysis, MCA was applied to decomposing and denoising gearbox signals, and the fault parameters were extracted by energy operator demodulation envelop of morphological component.展开更多
Many different effective reflection information are often contaminated by exterior and random noise which concealed in the seismic data.Traditional single or fixed transform is not suit for exploiting their complicate...Many different effective reflection information are often contaminated by exterior and random noise which concealed in the seismic data.Traditional single or fixed transform is not suit for exploiting their complicated characteristics and attenuating the noise.Recent years,a novel method so-called morphological component analysis(MCA)is put forward to separate different geometrical components by amalgamating several irrelevance transforms.According to study the local singular and smooth linear components characteristics of seismic data,we propose a method of suppressing noise by integrating with the advantages of adaptive K-singular value decomposition(K-SVD)and wave atom dictionaries to depict the morphological features diversity of seismic signals.Numerical results indicate that our method can dramatically suppress the undesired noises,preserve the information of geologic body and geological structure and improve the signal-to-noise ratio of the data.We also demonstrate the superior performance of this approach by comparing with other novel dictionaries such as discrete cosine transform(DCT),undecimated discrete wavelet transform(UDWT),or curvelet transform,etc.This algorithm provides new ideas for data processing to advance quality and signal-to-noise ratio of seismic data.展开更多
The independence priori is very often used in the conventional blind source separation (BSS). Naturally, independent component analysis (ICA) is also employed to perform BSS very often. However, ICA is difficult t...The independence priori is very often used in the conventional blind source separation (BSS). Naturally, independent component analysis (ICA) is also employed to perform BSS very often. However, ICA is difficult to use in some challenging cases, such as underdetermined BSS or blind separation of dependent sources. Recently, sparse component analysis (SCA) has attained much attention because it is theoretically available for underdetermined BSS and even for blind dependent source separation sometimes. However, SCA has not been developed very sufficiently. Up to now, there are only few existing algorithms and they are also not perfect as well in practice. For example, although Lewicki-Sejnowski's natural gradient for SCA is superior to K-mean clustering, it is just an approximation without rigorously theoretical basis. To overcome these problems, a new natural gradient formula is proposed in this paper. This formula is derived directly from the cost function of SCA through matrix theory. Mathematically, it is more rigorous. In addition, a new and robust adaptive BSS algorithm is developed based on the new natural gradient. Simulations illustrate that this natural gradient formula is more robust and reliable than Lewicki-Sejnowski's gradient.展开更多
Block principle and pattern classification component analysis (BPCA) is a recently developed technique in computer vision In this paper, we propose a robust and sparse BPCA with Lp-norm, referred to as BPCALp-S, whi...Block principle and pattern classification component analysis (BPCA) is a recently developed technique in computer vision In this paper, we propose a robust and sparse BPCA with Lp-norm, referred to as BPCALp-S, which inherits the robustness of BPCA-L1 due to the employment of adjustable Lp-norm. In order to perform a sparse modelling, the elastic net is integrated into the objective function. An iterative algorithm which extracts feature vectors one by one greedily is elaborately designed. The monotonicity of the proposed iterative procedure is theoretically guaranteed. Experiments of image classification and reconstruction on several benchmark sets show the effectiveness of the proposed approach.展开更多
Based on the measurement model of inverse synthetic aperture radar (ISAR) within a small aspect sector,an imaging method was presented with the application of sparse signal processing.This method can form higher resol...Based on the measurement model of inverse synthetic aperture radar (ISAR) within a small aspect sector,an imaging method was presented with the application of sparse signal processing.This method can form higher resolution inverse synthetic aperture radar images from compensating incomplete measured data,and improves the clarity of the images and makes the feature structure much more clear,which is helpful for target recognition.The simulation results indicate that this method can provide clear ISAR images with high contrast under complex motion case.展开更多
A contourlet-transform (CT) based sparse independent component analysis for blind image separation is proposed. The images are first decomposed into sets of local features with various degrees of sparsity, and then ...A contourlet-transform (CT) based sparse independent component analysis for blind image separation is proposed. The images are first decomposed into sets of local features with various degrees of sparsity, and then the intrinsic property is used to select the best (sparsest) subsets of features for further separation. Based on sparse description of the contourlet- transform, the proposed approach is able to yield better performance, including faster convergence and the certain order for the separated signals. Simulation results confirm the validity of the proposed method.展开更多
Adding colors to monochrome thermal infrared images can help observers understand the scenery better. A nonlinear color estimation method for single-band thermal infrared imagery based on kernel principal component an...Adding colors to monochrome thermal infrared images can help observers understand the scenery better. A nonlinear color estimation method for single-band thermal infrared imagery based on kernel principal component analysis (KPCA) and sparse representation was proposed. Nonlinear features of infrared image were extracted using KPCA. The relationship between image features and chromatic values was learned using sparse representation and a color estimation model was obtained. The thermal infrared images can be rendered automatically using the color estimation model. The experimental results show that the proposed method can render infrared image with an accurate color appearance. The proposed idea can also be used in other color estimation problem.展开更多
文摘Principal Component Analysis (PCA) is a widely used technique for data analysis and dimensionality reduction, but its sensitivity to feature scale and outliers limits its applicability. Robust Principal Component Analysis (RPCA) addresses these limitations by decomposing data into a low-rank matrix capturing the underlying structure and a sparse matrix identifying outliers, enhancing robustness against noise and outliers. This paper introduces a novel RPCA variant, Robust PCA Integrating Sparse and Low-rank Priors (RPCA-SL). Each prior targets a specific aspect of the data’s underlying structure and their combination allows for a more nuanced and accurate separation of the main data components from outliers and noise. Then RPCA-SL is solved by employing a proximal gradient algorithm for improved anomaly detection and data decomposition. Experimental results on simulation and real data demonstrate significant advancements.
基金This work was supported by the General Design Department,China Academy of Space Technology(10377).
文摘The spaceborne synthetic aperture radar(SAR)sparse flight 3-D imaging technology through multiple observations of the cross-track direction is designed to form the cross-track equivalent aperture,and achieve the third dimensionality recognition.In this paper,combined with the actual triple star orbits,a sparse flight spaceborne SAR 3-D imaging method based on the sparse spectrum of interferometry and the principal component analysis(PCA)is presented.Firstly,interferometric processing is utilized to reach an effective sparse representation of radar images in the frequency domain.Secondly,as a method with simple principle and fast calculation,the PCA is introduced to extract the main features of the image spectrum according to its principal characteristics.Finally,the 3-D image can be obtained by inverse transformation of the reconstructed spectrum by the PCA.The simulation results of 4.84 km equivalent cross-track aperture and corresponding 1.78 m cross-track resolution verify the effective suppression of this method on high-frequency sidelobe noise introduced by sparse flight with a sparsity of 49%and random noise introduced by the receiver.Meanwhile,due to the influence of orbit distribution of the actual triple star orbits,the simulation results of the sparse flight with the 7-bit Barker code orbits are given as a comparison and reference to illuminate the significance of orbit distribution for this reconstruction results.This method has prospects for sparse flight 3-D imaging in high latitude areas for its short revisit period.
基金supported by the National Natural Science Foundation of China(Nos.51405241,61672290)the Jiangsu Government Scholarship for Overseas Studies and the PAPD Fund
文摘Signals can be sampled by compressive sensing theory with a much less rate than those by traditional Nyquist sampling theorem,and reconstructed with high probability,only when signals are sparse in the time domain or a transform domain.Most signals are not sparse in real world,but can be expressed in sparse form by some kind of sparse transformation.Commonly used sparse transformations will lose some information,because their transform bases are generally fixed.In this paper,we use principal component analysis for data reduction,and select new variable with low dimension and linearly correlated to the original variable,instead of the original variable with high dimension,thus the useful data of the original signals can be included in the sparse signals after dimensionality reduction with maximize portability.Therefore,the loss of data can be reduced as much as possible,and the efficiency of signal reconstruction can be improved.Finally,the composite material plate is used for the experimental verification.The experimental result shows that the sparse representation of signals based on principal component analysis can reduce signal distortion and improve signal reconstruction efficiency.
基金supported by the National Scientific Equipment Development Project,"Deep Resource Exploration Core Equipment Research and Development"(Grant No.ZDYZ2012-1)06 Subproject,"Metal Mine Earthquake Detection System"and 05 Subject,"System Integration Field Test and Processing Software Development"
文摘Ground roll is an interference wave that severely degrades the signal-to-noise ratio of seismic data and affects its subsequent processing and interpretation.In this study,according to differences in morphological characteristics between ground roll and reflected waves,we use morphological component analysis based on two-dimensional dictionaries to separate ground roll and reflected waves.Because ground roll is characterized by lowfrequency,low-velocity,and dispersion,we select two-dimensional undecimated discrete wavelet transform as a sparse representation dictionary of ground roll.Because of a strong local correlation of the reflected wave,we select two-dimensional local discrete cosine transform as the sparse representation dictionary of reflected waves.A sparse representation model of seismic data is constructed based on a two-dimensional joint dictionary then a block coordinate relaxation algorithm is used to solve the model and decompose seismic record into reflected wave part and ground roll part.The good effects for the synthetic seismic data and application of real seismic data indicate that when using the model,strong-energy ground roll is considerably suppressed and the waveform of the reflected wave is effectively protected.
基金supported in part by the National Natural Science Foundation of China(61302041,61363044,61562053,61540042)the Applied Basic Research Foundation of Yunnan Provincial Science and Technology Department(2013FD011,2016FD039)
文摘Text in natural scene images usually carries abundant semantic information. However, due to variations of text and complexity of background, detecting text in scene images becomes a critical and challenging task. In this paper, we present a novel method to detect text from scene images. Firstly, we decompose scene images into background and text components using morphological component analysis(MCA), which will reduce the adverse effects of complex backgrounds on the detection results.In order to improve the performance of image decomposition,two discriminative dictionaries of background and text are learned from the training samples. Moreover, Laplacian sparse regularization is introduced into our proposed dictionary learning method which improves discrimination of dictionary. Based on the text dictionary and the sparse-representation coefficients of text, we can construct the text component. After that, the text in the query image can be detected by applying certain heuristic rules. The results of experiments show the effectiveness of the proposed method.
基金National Natural Science Foundation of China(No.51575523)
文摘Morphological component analysis( MCA) is a signal separation method based on signal morphological diversity and sparse representation. MCA can extract the signal components of different morphologies by different dictionary combinations. Firstly,the theory of MCA was analyzed with sparse representation principle and relaxation criterion. Then detailed steps of block coordinate relaxation( BCR) were given. Finally,algorithm performance was verified by simulation signals analysis, MCA was applied to decomposing and denoising gearbox signals, and the fault parameters were extracted by energy operator demodulation envelop of morphological component.
基金sponsored by National Natural Science Foundation of China(No.41672325,41602334)National Key Research and Development Program of China(No.2017YFC0601505).
文摘Many different effective reflection information are often contaminated by exterior and random noise which concealed in the seismic data.Traditional single or fixed transform is not suit for exploiting their complicated characteristics and attenuating the noise.Recent years,a novel method so-called morphological component analysis(MCA)is put forward to separate different geometrical components by amalgamating several irrelevance transforms.According to study the local singular and smooth linear components characteristics of seismic data,we propose a method of suppressing noise by integrating with the advantages of adaptive K-singular value decomposition(K-SVD)and wave atom dictionaries to depict the morphological features diversity of seismic signals.Numerical results indicate that our method can dramatically suppress the undesired noises,preserve the information of geologic body and geological structure and improve the signal-to-noise ratio of the data.We also demonstrate the superior performance of this approach by comparing with other novel dictionaries such as discrete cosine transform(DCT),undecimated discrete wavelet transform(UDWT),or curvelet transform,etc.This algorithm provides new ideas for data processing to advance quality and signal-to-noise ratio of seismic data.
基金the National Natural Science Foundation of China (Grant Nos. 60505005, 60674033, 60774094 and U0635001)Natural Science Fund of Guangdong Province, China (Grant Nos. 05103553 and 05006508)+1 种基金Postdoctoral Science Foundation for Innovation from South China University of TechnologyChina Postdoctoral Science Foundation (Grant No. 20070410237)
文摘The independence priori is very often used in the conventional blind source separation (BSS). Naturally, independent component analysis (ICA) is also employed to perform BSS very often. However, ICA is difficult to use in some challenging cases, such as underdetermined BSS or blind separation of dependent sources. Recently, sparse component analysis (SCA) has attained much attention because it is theoretically available for underdetermined BSS and even for blind dependent source separation sometimes. However, SCA has not been developed very sufficiently. Up to now, there are only few existing algorithms and they are also not perfect as well in practice. For example, although Lewicki-Sejnowski's natural gradient for SCA is superior to K-mean clustering, it is just an approximation without rigorously theoretical basis. To overcome these problems, a new natural gradient formula is proposed in this paper. This formula is derived directly from the cost function of SCA through matrix theory. Mathematically, it is more rigorous. In addition, a new and robust adaptive BSS algorithm is developed based on the new natural gradient. Simulations illustrate that this natural gradient formula is more robust and reliable than Lewicki-Sejnowski's gradient.
基金the National Natural Science Foundation of China(No.61572033)the Natural Science Foundation of Education Department of Anhui Province of China(No.KJ2015ZD08)the Higher Education Promotion Plan of Anhui Province of China(No.TSKJ2015B14)
文摘Block principle and pattern classification component analysis (BPCA) is a recently developed technique in computer vision In this paper, we propose a robust and sparse BPCA with Lp-norm, referred to as BPCALp-S, which inherits the robustness of BPCA-L1 due to the employment of adjustable Lp-norm. In order to perform a sparse modelling, the elastic net is integrated into the objective function. An iterative algorithm which extracts feature vectors one by one greedily is elaborately designed. The monotonicity of the proposed iterative procedure is theoretically guaranteed. Experiments of image classification and reconstruction on several benchmark sets show the effectiveness of the proposed approach.
基金Project supported by the National Natural Science Foundation of China
文摘Based on the measurement model of inverse synthetic aperture radar (ISAR) within a small aspect sector,an imaging method was presented with the application of sparse signal processing.This method can form higher resolution inverse synthetic aperture radar images from compensating incomplete measured data,and improves the clarity of the images and makes the feature structure much more clear,which is helpful for target recognition.The simulation results indicate that this method can provide clear ISAR images with high contrast under complex motion case.
基金Project supported by the National Natural Science Foundation of China (Grant No.60472103), the Shanghai Excellent Academic Leader Project (Grant No.05XP14027), and the Shanghai Leading Academic Discipline Project (Grant No.T0102)
文摘A contourlet-transform (CT) based sparse independent component analysis for blind image separation is proposed. The images are first decomposed into sets of local features with various degrees of sparsity, and then the intrinsic property is used to select the best (sparsest) subsets of features for further separation. Based on sparse description of the contourlet- transform, the proposed approach is able to yield better performance, including faster convergence and the certain order for the separated signals. Simulation results confirm the validity of the proposed method.
基金National Natural Science Foundation of China(No. 61072090)the Fundamental Research Funds for the Central Universities,China+2 种基金Shanghai Pujiang Program,China(No. 12PJ1402200)China Postdoctoral Science Foundation Funded Project(No. 2012M511058)Shanghai Postdoctoral Sustentation Fund,China(No. 12R21412500)
文摘Adding colors to monochrome thermal infrared images can help observers understand the scenery better. A nonlinear color estimation method for single-band thermal infrared imagery based on kernel principal component analysis (KPCA) and sparse representation was proposed. Nonlinear features of infrared image were extracted using KPCA. The relationship between image features and chromatic values was learned using sparse representation and a color estimation model was obtained. The thermal infrared images can be rendered automatically using the color estimation model. The experimental results show that the proposed method can render infrared image with an accurate color appearance. The proposed idea can also be used in other color estimation problem.