近30年来,随着对地观测技术、资源调查与信息传输技术的增强,地里国情各领域积累了海量的空间数据。在时间序列内对海量空间数据处理分析,为环境变化预测、生态恢复重建、资源合理开发提供科学的数据参考。国家对土地资源普查监测频次...近30年来,随着对地观测技术、资源调查与信息传输技术的增强,地里国情各领域积累了海量的空间数据。在时间序列内对海量空间数据处理分析,为环境变化预测、生态恢复重建、资源合理开发提供科学的数据参考。国家对土地资源普查监测频次逐年提高,以此来了解资源现状、以及变化情况。传统模型对数据处理分析存在一定限制。在此背景下,选取黑河上游山区作为实验区,构建Logistic-CA-Markov(LCM)模拟与预测模型,探讨其对实验区LUCC(land use and cover change)的模拟效果,以及预测未来30年实验区LUCC情况。结果表明,对时空数据的时间序列变化与空间维度演化,LCM模型具有较强的模拟能力。展开更多
文摘近30年来,随着对地观测技术、资源调查与信息传输技术的增强,地里国情各领域积累了海量的空间数据。在时间序列内对海量空间数据处理分析,为环境变化预测、生态恢复重建、资源合理开发提供科学的数据参考。国家对土地资源普查监测频次逐年提高,以此来了解资源现状、以及变化情况。传统模型对数据处理分析存在一定限制。在此背景下,选取黑河上游山区作为实验区,构建Logistic-CA-Markov(LCM)模拟与预测模型,探讨其对实验区LUCC(land use and cover change)的模拟效果,以及预测未来30年实验区LUCC情况。结果表明,对时空数据的时间序列变化与空间维度演化,LCM模型具有较强的模拟能力。