Panel data combine cross-section data and time series data. If the cross-section is locations, there is a need to check the correlation among locations. ρ and λ are parameters in generalized spatial model to cover e...Panel data combine cross-section data and time series data. If the cross-section is locations, there is a need to check the correlation among locations. ρ and λ are parameters in generalized spatial model to cover effect of correlation between locations. Value of ρ or λ will influence the goodness of fit model, so it is important to make parameter estimation. The effect of another location is covered by making contiguity matrix until it gets spatial weighted matrix (W). There are some types of W—uniform W, binary W, kernel Gaussian W and some W from real case of economics condition or transportation condition from locations. This study is aimed to compare uniform W and kernel Gaussian W in spatial panel data model using RMSE value. The result of analysis showed that uniform weight had RMSE value less than kernel Gaussian model. Uniform W had stabil value for all the combinations.展开更多
It is clearly stated in the 19th people's congress that we should make the environmental protection as our national policy. Therefore, it is of great importance to study this issue. This article is going to consid...It is clearly stated in the 19th people's congress that we should make the environmental protection as our national policy. Therefore, it is of great importance to study this issue. This article is going to consider 30 provinces of China as the cross-section, and utilize the data sample from 2006 to 2015 of these cross-sections to formulate a Spatial Panel Data Durbin Model to analyze the effect of FDI. By using these data, this article creates a comprehensive environmental pollution index with the help of entropy. The result indicates that the effect of FDI on environment has a non-linear and spatial spillover characteristic. Before reaching the critical value, FDI has a negative effect on environment; however, with the accumulation of FDI, it will create a significant positive effect on the environment.展开更多
Impoverished sub-Saharan Africa(SSA)is under increasing environmental pressure from global environmental changes.It is now generally accepted in academic circles that economic development in SSA countries can cause en...Impoverished sub-Saharan Africa(SSA)is under increasing environmental pressure from global environmental changes.It is now generally accepted in academic circles that economic development in SSA countries can cause environmental pressure in other countries.However,there is research gap on the impact of economic assistance on environmental pressure in SSA countries and whether economic assistance causes spatial spillovers of environ-mental pressure between SSA countries.To better understand the impact of economic assistance on environmental pressures in SSA,a dynamic spatial Dubin panel model was developed.It helped us explore the spatial spillover effects of economic assistance on environmental pressures in recipient countries based on the panel data from 34 SSA countries.The results show that economic assistance had a positive stimulating effect on environmen-tal pressures of recipient countries,which means that the degree of human disturbance to the environment has deepened.Due to the regional correlation effect,neighboring countries were saddled with environmental pres-sures from the target country.Moreover,environmental pressures have time inertia,which can easily produce a snowball effect.The decomposition of effects shows that the impact of economic assistance on environmental pressures is relatively minor.Environmental pressures have spillover effects,so to deal with diffuse risks,joint regional prevention and control policies should be developed.展开更多
This article considers 30 provinces of China as the cross-section subjects, and utilizes the data sample from 2009 to 2015 of these cross-sections to formulate a Spatial Panel Data Durbin Model to analyze the effect o...This article considers 30 provinces of China as the cross-section subjects, and utilizes the data sample from 2009 to 2015 of these cross-sections to formulate a Spatial Panel Data Durbin Model to analyze the effect of environmental regulation on employment. The result indicates that environmental regulation has negative effect on employment with the consideration of spatial spillover effect, and this adverse effect is not significant mathematically. With the enhance of environmental regulation, the negative impact on employment will decrease accordingly, even may eventually promote job growth, which means there may be a non-linear relationship between them. Specifically, the direct effect of environmental regulation on employment indicates that it is beneficial for job growth whereas the indirect effect illustrate that it is detrimental for employment.展开更多
In this review, we highlight some recent methodological and theoretical develop- ments in estimation and testing of large panel data models with cross-sectional dependence. The paper begins with a discussion of issues...In this review, we highlight some recent methodological and theoretical develop- ments in estimation and testing of large panel data models with cross-sectional dependence. The paper begins with a discussion of issues of cross-sectional dependence, and introduces the concepts of weak and strong cross-sectional dependence. Then, the main attention is primarily paid to spatial and factor approaches for modeling cross-sectional dependence for both linear and nonlinear (nonparametric and semiparametric) panel data models. Finally, we conclude with some speculations on future research directions.展开更多
In this paper,we apply the spatial panel model to explore the relationship between the dynamic of two types of crude oil prices(WTI and Brent crude oil)and their refined products over time.Considering the turbulent mo...In this paper,we apply the spatial panel model to explore the relationship between the dynamic of two types of crude oil prices(WTI and Brent crude oil)and their refined products over time.Considering the turbulent months of 2011,when Cushing Oklahoma had reached capacity and the crude oil export ban removal in 2015 as breakpoints,we apply this method both in the full sample and the three resultant regimes.First,results suggest our results show that both WTI and Brent display very similar behaviour with the refined products.Second,when attending to each regime,results derived from the first and third regimes are quite similar to the full sample results.Therefore,during the second regime,Brent crude oil became the benchmark in the petrol market,and it influenced the distillate products.Furthermore,our model can let us determine the price-setters and price-followers in the price formation mechanism through refined products.These results possess important considerations to policymakers and the market participants and the price formation.展开更多
Enhancing the economic resilience of agriculture is essential for promoting sustainable and high-quality agricultural development.The emergence of digital technology has created new opportunities in this field.However...Enhancing the economic resilience of agriculture is essential for promoting sustainable and high-quality agricultural development.The emergence of digital technology has created new opportunities in this field.However,existing research predominantly focuses on traditional agricultural factors and technologies.Therefore,the impact of digital technology on agricultural economic resilience within the broader context of the“production-operation-industry”system in agriculture has not been comprehensively explored.To bridge this gap,this study analyzes panel data from 30 Chinese provinces from 2011 to 2020.It employs the static Van Dorn’s law and a dynamic spatial panel model to examine how digital technology empowers agricultural resilience.The findings indicate a continuous strengthening of digital technology development in China,albeit with significant polarization and spatial imbalances.Moreover,the resilience of the agricultural economy undergoes notable fluctuations,initially narrowing and subsequently displaying an upward trend.Digital technology clearly plays a pivotal role in empowering resilience through agricultural scale operation,industrial transformation,and technological progress.Its impact,particularly on the promotion of resilience in the eastern region and non-grain-producing areas and on high-level agricultural economies,also shows regional and technological variations.展开更多
文摘Panel data combine cross-section data and time series data. If the cross-section is locations, there is a need to check the correlation among locations. ρ and λ are parameters in generalized spatial model to cover effect of correlation between locations. Value of ρ or λ will influence the goodness of fit model, so it is important to make parameter estimation. The effect of another location is covered by making contiguity matrix until it gets spatial weighted matrix (W). There are some types of W—uniform W, binary W, kernel Gaussian W and some W from real case of economics condition or transportation condition from locations. This study is aimed to compare uniform W and kernel Gaussian W in spatial panel data model using RMSE value. The result of analysis showed that uniform weight had RMSE value less than kernel Gaussian model. Uniform W had stabil value for all the combinations.
基金supported by the Hubei Province Educational Division Social Science Research Project(Grant No.15G051)
文摘It is clearly stated in the 19th people's congress that we should make the environmental protection as our national policy. Therefore, it is of great importance to study this issue. This article is going to consider 30 provinces of China as the cross-section, and utilize the data sample from 2006 to 2015 of these cross-sections to formulate a Spatial Panel Data Durbin Model to analyze the effect of FDI. By using these data, this article creates a comprehensive environmental pollution index with the help of entropy. The result indicates that the effect of FDI on environment has a non-linear and spatial spillover characteristic. Before reaching the critical value, FDI has a negative effect on environment; however, with the accumulation of FDI, it will create a significant positive effect on the environment.
基金This work is supported by National Natural Science Foundation of China(Grants No.72104246,71874203).
文摘Impoverished sub-Saharan Africa(SSA)is under increasing environmental pressure from global environmental changes.It is now generally accepted in academic circles that economic development in SSA countries can cause environmental pressure in other countries.However,there is research gap on the impact of economic assistance on environmental pressure in SSA countries and whether economic assistance causes spatial spillovers of environ-mental pressure between SSA countries.To better understand the impact of economic assistance on environmental pressures in SSA,a dynamic spatial Dubin panel model was developed.It helped us explore the spatial spillover effects of economic assistance on environmental pressures in recipient countries based on the panel data from 34 SSA countries.The results show that economic assistance had a positive stimulating effect on environmen-tal pressures of recipient countries,which means that the degree of human disturbance to the environment has deepened.Due to the regional correlation effect,neighboring countries were saddled with environmental pres-sures from the target country.Moreover,environmental pressures have time inertia,which can easily produce a snowball effect.The decomposition of effects shows that the impact of economic assistance on environmental pressures is relatively minor.Environmental pressures have spillover effects,so to deal with diffuse risks,joint regional prevention and control policies should be developed.
基金supported by the Hubei Province Educational Division Social Science Research Project (Grant No. 15G051)
文摘This article considers 30 provinces of China as the cross-section subjects, and utilizes the data sample from 2009 to 2015 of these cross-sections to formulate a Spatial Panel Data Durbin Model to analyze the effect of environmental regulation on employment. The result indicates that environmental regulation has negative effect on employment with the consideration of spatial spillover effect, and this adverse effect is not significant mathematically. With the enhance of environmental regulation, the negative impact on employment will decrease accordingly, even may eventually promote job growth, which means there may be a non-linear relationship between them. Specifically, the direct effect of environmental regulation on employment indicates that it is beneficial for job growth whereas the indirect effect illustrate that it is detrimental for employment.
基金Supported by the National Natural Science Foundation of China(71131008(Key Project)and 71271179)
文摘In this review, we highlight some recent methodological and theoretical develop- ments in estimation and testing of large panel data models with cross-sectional dependence. The paper begins with a discussion of issues of cross-sectional dependence, and introduces the concepts of weak and strong cross-sectional dependence. Then, the main attention is primarily paid to spatial and factor approaches for modeling cross-sectional dependence for both linear and nonlinear (nonparametric and semiparametric) panel data models. Finally, we conclude with some speculations on future research directions.
文摘In this paper,we apply the spatial panel model to explore the relationship between the dynamic of two types of crude oil prices(WTI and Brent crude oil)and their refined products over time.Considering the turbulent months of 2011,when Cushing Oklahoma had reached capacity and the crude oil export ban removal in 2015 as breakpoints,we apply this method both in the full sample and the three resultant regimes.First,results suggest our results show that both WTI and Brent display very similar behaviour with the refined products.Second,when attending to each regime,results derived from the first and third regimes are quite similar to the full sample results.Therefore,during the second regime,Brent crude oil became the benchmark in the petrol market,and it influenced the distillate products.Furthermore,our model can let us determine the price-setters and price-followers in the price formation mechanism through refined products.These results possess important considerations to policymakers and the market participants and the price formation.
基金the National Social Science Foundation[Grant No.21&ZD101]:Research on the Implementation Path and Policy System of High-quality Development of China’s Food Industrythe National Social Science Foundation[Grant No.BGL167]:Research on the Green Benefit Sharing Mechanism of Ecological Protection in the Yangtze River Basin(2021-2024)for its support.
文摘Enhancing the economic resilience of agriculture is essential for promoting sustainable and high-quality agricultural development.The emergence of digital technology has created new opportunities in this field.However,existing research predominantly focuses on traditional agricultural factors and technologies.Therefore,the impact of digital technology on agricultural economic resilience within the broader context of the“production-operation-industry”system in agriculture has not been comprehensively explored.To bridge this gap,this study analyzes panel data from 30 Chinese provinces from 2011 to 2020.It employs the static Van Dorn’s law and a dynamic spatial panel model to examine how digital technology empowers agricultural resilience.The findings indicate a continuous strengthening of digital technology development in China,albeit with significant polarization and spatial imbalances.Moreover,the resilience of the agricultural economy undergoes notable fluctuations,initially narrowing and subsequently displaying an upward trend.Digital technology clearly plays a pivotal role in empowering resilience through agricultural scale operation,industrial transformation,and technological progress.Its impact,particularly on the promotion of resilience in the eastern region and non-grain-producing areas and on high-level agricultural economies,also shows regional and technological variations.