With a focus on the difficulty of quantitatively describing the degree of nonuniformity of temporal and spatial distributions of water resources, quantitative research was carried out on the temporal and spatial distr...With a focus on the difficulty of quantitatively describing the degree of nonuniformity of temporal and spatial distributions of water resources, quantitative research was carried out on the temporal and spatial distribution characteristics of water resources in Guangdong Province from 1956 to 2000 based on a cloud model. The spatial variation of the temporal distribution characteristics and the temporal variation of the spatial distribution characteristics were both analyzed. In addition, the relationships between the numerical characteristics of the cloud model of temporal and spatial distributions of water resources and precipitation were also studied. The results show that, using a cloud model, it is possible to intuitively describe the temporal and spatial distribution characteristics of water resources in cloud images. Water resources in Guangdong Province and their temporal and spatial distribution characteristics are differentiated by their geographic locations. Downstream and coastal areas have a larger amount of water resources with greater uniformity and stronger stability in terms of temporal distribution. Regions with more precipitation possess larger amounts of water resources, and years with more precipitation show greater nonuniformity in the spatial distribution of water resources. The correlation between the nonuniformity of the temporal distribution and local precipitation is small, and no correlation is found between the stability of the nonuniformity of the temporal and spatial distributions of water resources and precipitation. The amount of water resources in Guangdong Province shows an increasing trend from 1956 to 2000, the nonuniformity of the spatial distribution of water resources declines, and the stability of the nonuniformity of the spatial distribution of water resources is enhanced.展开更多
With the classical statistical and geostatistical methods, the study of the spatial distribution and its in- fluence factors of soil water, salinity and organic matter was carried out for 0-70 cm soil layers in Manas ...With the classical statistical and geostatistical methods, the study of the spatial distribution and its in- fluence factors of soil water, salinity and organic matter was carried out for 0-70 cm soil layers in Manas River watershed. The results showed that the soil moisture data from all soil layers exhibited a normal distribution, with average values of 14.08%-21.55%. Geostatistical analysis revealed that the content of soil moisture had a moder- ate spatial autocorrelation with the ratios of nugget/sill ranging from 0.500 to 0.718, which implies that the spatial pattern of soil moisture is influenced by the combined effects of structural factors and random factors. Remarkable spatial distributions with stripped and mottled features were found for soil moisture in all different soil layers. The landform and crop planting had a relatively big influence on the spatial distribution of soil moisture; total soil salinity was high in east but low in west, and non-salinized soil and lightly salinized soil appeared at the northwest and southwest of the study area. Under the effect of reservoir leakage, the heavily salinized soils are widely distributed in the middle of the study area. The areas of the non-salinized and lightly salinized soils decreased gradually with soil depth increment, which is contrary to the case for saline soils that reached a maximum of 245.67 km2 at the layer of 50-70 cm. The types of soil salinization in Manas River watershed were classified into four classes: the sulfate, chloride-sulfate, sulfate-chloride and chloride. The sulfate salinized soil is most widely distributed in the surface layer. The areas of chloride-sulfate, sulfate-chloride, and chloride salinized soils increased gradually along with the increment of soil depth; the variation range of the average values of soil organic matter content was be- tween 7.48%-11.33%. The ratios of nugget/sill reduced gradually from 0.698 to 0.299 with soil depth increment, which shows that the content of soil organic matter has a moderate spatial autocorrelation. The soil organic matter in all soil layers met normal distribution after logarithmic transformation. The spatial distribution patterns of soil or- ganic matter and soil moisture were similar; the areas with high organic matter contents were mainly distributed in the south of the study area, with the lowest contents in the middle.展开更多
Heavy metal contamination in soils has been of wide concern in China in the last several decades. The heavy metal contamination was caused by sewage irrigation, mining and inappropriate utilization of various agrochem...Heavy metal contamination in soils has been of wide concern in China in the last several decades. The heavy metal contamination was caused by sewage irrigation, mining and inappropriate utilization of various agrochemicals and pesticides and so on. The Shenyang Zhangshi irrigation area (SZIA) in China is a representative area of heavy metal contamination of soils resulting from sewage irrigation for about 30 years duration. This study investigated the spatial distribution and temporal variation of soil cadmium contamination in the SZIA. The soil samples were collected from the SZIA in 1990 and 2004; Cd of soils was analyzed and then the spatial distribution and temporal variation of Cd in soils was modelled using kriging methods. The kriging map showed that long-term sewage irrigation had caused serious Cd contamination in topsoil and subsoil. In 2004, the Cd mean concentrations were 1.698 and 0.741 mg/kg, and the maxima 10.150 and 7.567 mg/kg in topsoils (0-20 cm) and subsoils (20-40 cm) respectively. These values are markedly more than the Cd levels in the second grade soil standard in China. In 1990, the Cd means were 1.023 and 0.331 mg/kg, and the maxima 9.400 and 3.156 mg/kg, in topsoils and subsoils respectively. The soil area in 1990 with Cd more than 1.5 mg/kg was 2701 and 206.4 hnl2 in topsoils and subsoils respectively; and in 2004, it was 7592 and 1583 hm^2, respectively. Compared with that in 1990, the mean and maximum concentration of Cd, as well as the soil area with Cd more than 1.5 mg/kg had all increased in 2004, both in topsoils and subsoils.展开更多
The investigation was conducted on the spatial and temporal distributions of soil organic mater (SOM) in the mixed plantations of alder (Aluns crernastogyne) and cypress (Cupressus funebris ) (MPAC), which dis...The investigation was conducted on the spatial and temporal distributions of soil organic mater (SOM) in the mixed plantations of alder (Aluns crernastogyne) and cypress (Cupressus funebris ) (MPAC), which distributed in the hilly areas of central Sichuan Basin (HACSB). The results show that: (1) the spatial distribution of SOM among different sites at the same age are not significant before 15-year-old, but significant at 20-year-old, and not significant again after 25-year-old; (2) the SOM contents in 0-15 cm and 15-30 cm layers increase sharply from 10- to 15-year-old, and decline gradually from 15- to 30- year-old; the SOM contents of the 30-year-old PCP were 80. 38% and 78.42% higher than that of the 10-year-old, but 29.16% and 53.37% lower than that of 15-year-old in the 0-15 cm and 15-30 cm layers, respectively. The decrease of SOM contents would lead to the degradation of soil fertility and the decline of forest productivity.展开更多
Water consumption is a key role in improving the efficiency and sustainability of water management in arid environments.In this study, we explored an approach based on meta-analysis, MODIS NDVI products, land-use spat...Water consumption is a key role in improving the efficiency and sustainability of water management in arid environments.In this study, we explored an approach based on meta-analysis, MODIS NDVI products, land-use spatial distribution, andsoil water physical parameters to gain insight into long-term and large scale distribution of land use and water consumption,maintain maximum Zhangye Oasis area according to Heihe River runoff, and suitable water resource management inZhangye Oasis. This approach was initiated in order to improve the efficiency of irrigation and water resource managementin arid regions. Results showed that Heihe River runoff can maintain a maximum Zhangye Oasis area of 22.49×104 hm2.During the 2000−2016 growing seasons, actual oasis water consumption ranged from 11.35×108 m3 to 13.73×108 m3, witha mean of (12.89 ± 0.60)×108 m3;if maintaining agricultural production and oasis stability was chosen, oasis water consumptionranged from 10.24×108 m3 to 12.37×108 m3, with a mean of (11.62 ± 0.53)×108 m3. From the perspective of waterresources management and ecosystem stability, it is necessary to reduce the area of Zhangye Oasis or choose the minimumwater consumption method to manage the oasis, to ease the pressure of water shortage and maintain stable and sustainabledevelopment of the Zhangye Oasis. These results can provide future practical guidance for water resource management ofcoordinated development of the economy and the environment in an arid area.展开更多
Soil salinity is the most important factor affecting vegetation distribution,and the secondary salinization has affected the development of oasis agriculture.In arid areas the spatial variation of soil moisture and sa...Soil salinity is the most important factor affecting vegetation distribution,and the secondary salinization has affected the development of oasis agriculture.In arid areas the spatial variation of soil moisture and sa lt content is marked-ly affected by groundwater,irratio nal irrigation in artificial oasis.By analyzing the soil moisture,salt content and groundwa-ter table in different areas of old oasis,new oasis and desert in Fukang Oa sis,it is shown that topography and l and use are main factors affecting the change of groundwater table,the redistribution of soil moisture and salt cont ent.When undis-turbed by human,the groundwater tab le rises from mountain to belt of grou nd water spillage,the groundwater t able rises mightily in plain because of the artificial irrigation,and the secondary salinization of soil is very seriou s.In oasis the ground-water table raises compared with that in the natural desert at the same latitude.In old oasis of upper reaches o f river salt has not been concentrated too much in rhizosphere because this area is the belt of groundwater drainage,soil t exture is coarse,the groundwater table is very low,and the salt in soil is drained i nto the groundwater.The new oasis has been the areas of salt accumulation becau se of the artificial irrigation,the salt content in soil is higher than th at in old oasis,so some cultivated fields here had to be thrown out because of the serious s econdary salinization.展开更多
Based on the investigation data of Jiaozhou Bay waters in 1981,current situation and horizontal distribution of Cr content in bottom waters of Jiaozhou Bay mouth were studied. Results showed that in bottom waters of J...Based on the investigation data of Jiaozhou Bay waters in 1981,current situation and horizontal distribution of Cr content in bottom waters of Jiaozhou Bay mouth were studied. Results showed that in bottom waters of Jiaozhou Bay center,Cr content changed from 0. 50 to3. 78 μg/L in April. In August,Cr content changed from 0. 14 to 1. 42 μg/L in bottom waters of Jiaozhou Bay mouth. It showed that Cr content corresponded with national class-one seawater quality standard(50. 00 μg/L) at different times and spaces,and Cr content was far less than5. 00 μg/L. Therefore,under the effect of vertical water body,water quality was clean in bottom waters of Jiaozhou Bay,which was not polluted by Cr. In bottom waters of Jiaozhou Bay center in April and bottom waters of Jiaozhou Bay mouth in August,Cr transported by the river came to the bottom layer from surface layer by passing through water body in temporal-spatial change process. Under the effects of gravity and water flow,Cr continuously and quickly sank to the sea bottom. It verified the sedimentation process of Cr content.展开更多
The temporal and spatial characteristics of urban river bacterial communities help us understand the feedback mechanism of bacteria to changes in the aquatic environment.The Fuhe River plays an important role in deter...The temporal and spatial characteristics of urban river bacterial communities help us understand the feedback mechanism of bacteria to changes in the aquatic environment.The Fuhe River plays an important role in determining the water ecological environment of Baiyangdian Lake.16S rRNA gene sequencing was used to study the microbial distribution characteristics in the Fuhe River in different seasons.The results showed that some environmental factors of the surface water(ammonia nitrogen(NH_(3)^(-)N),total nitrogen(TN),and total phosphorus(TP))were different on the spatial and temporal scales.Moreover,there were no seasonal differences in the contents of TN,TP,total organic carbon(TOC),or heavy metals in the sediments.The distributions of Cyanobacteria,Actinomycetes and Firmicutes in the water and Actinomycetes and Planctomycetes in the sediments differed significantly among seasons(P<0.05).There were significant spatial differences in bacteria in the surface water,with the highest abundance of Proteobacteria recorded in the river along with the highest nutrient concentration,while the abundance of Bacteroidetes was higher in the upstream than the downstream.Microbial communities in the water weremost sensitive to temperature(T)and the TP concentration(P<0.01).Moreover,differences in the bacterial community were better explained by the content of heavy metals in the sediments than by the chemical characteristics.A PICRUStmetabolic inference analysis showed that the effect of high summer temperatures on the enzyme action led to an increase in the abundances of the metabolic-related genes of the river microorganisms.展开更多
Hexabromocyclododecane(HBCD) is an effective brominated flame-retardant additive, which is mainly produced in the coastal area of China. This study collected soil samples from a HBCD production plant and its surroundi...Hexabromocyclododecane(HBCD) is an effective brominated flame-retardant additive, which is mainly produced in the coastal area of China. This study collected soil samples from a HBCD production plant and its surrounding area in Weifang, Shandong Province, China, and analyzed the temporal–spatial distribution of HBCD and its diastereoisomers in soil. The analysis results showed that the concentration of HBCD in soil near the plant was much higher than normal values, with an annual average concentration reaching 5405 ng/g. Soils 1,2 and 4 km away from the plant were also analyzed, showing that the concentration of HBCD in soil decreased accordingly with the distance from the pollution sources. In order to investigate the effect of the season on HBCD content, the soil samples were collected in all four seasons of the year 2017–2018. According to variations in the wind direction, the concentration of HBCD in soil was also changed. The distribution trend showed that the concentration of HBCD in soil in the downwind direction of the prevailing wind was higher than that in the upwind direction. In addition, this work analyzed the distribution of HBCD in vertical soil sections. It was found that the concentration of HBCD decreased with depth in the soil vertical profile. Finally, the various diastereoisomer patterns in the soil compartments were examined, finding that α-HBCD and γ-HBCD were the predominant diastereoisomers in the soil of the study area.展开更多
The relics of ancient rice have been regarded as the most important objective evidence of the origina- tion and spread of rice cultivation.Based on the records of 280 rice relics sites and the rice cropping regionaliz...The relics of ancient rice have been regarded as the most important objective evidence of the origina- tion and spread of rice cultivation.Based on the records of 280 rice relics sites and the rice cropping regionalization as well as the distribution map of paddy soils,the current study compiled the temporal and spatial distribution map of ancient rice distribution in China.The map shows that the distribution of ancient rice is spatially extensive and meantime comparatively concentrated,temporarily covering a long and relatively continuous time-span.The rice relics in the Central China double and single rice cropping regions are among the earliest and the most abundant ones,possessing continuity in time sequence.Combined with the discovery of ancient rice and paddy filed relics,soil micromorphology, pollen combination and element geochemistry,it is suggested that Central China was the origin center of rice cultivation in China.Rice had been spread to the rest part of China in three major waves,also to the East Asian part like Korea and Japan.The temporal and spatial distribution of ancient rice reflects the past environmental change,which is also meaningful to the current rice regionalization and plan- ning as well as food security in China.展开更多
基金supported by the National Science and Technology Major Project of Water Pollution Control and Treatment(Grants No.2014ZX07405002,2012ZX07506007,2012ZX07506006,and 2012ZX07506002)the Natural Science Foundation of the Anhui Higher Education Institutions of China(Grant No.KJ2016A868)the Priority Academic Program Development of Jiangsu Higher Education Institutions
文摘With a focus on the difficulty of quantitatively describing the degree of nonuniformity of temporal and spatial distributions of water resources, quantitative research was carried out on the temporal and spatial distribution characteristics of water resources in Guangdong Province from 1956 to 2000 based on a cloud model. The spatial variation of the temporal distribution characteristics and the temporal variation of the spatial distribution characteristics were both analyzed. In addition, the relationships between the numerical characteristics of the cloud model of temporal and spatial distributions of water resources and precipitation were also studied. The results show that, using a cloud model, it is possible to intuitively describe the temporal and spatial distribution characteristics of water resources in cloud images. Water resources in Guangdong Province and their temporal and spatial distribution characteristics are differentiated by their geographic locations. Downstream and coastal areas have a larger amount of water resources with greater uniformity and stronger stability in terms of temporal distribution. Regions with more precipitation possess larger amounts of water resources, and years with more precipitation show greater nonuniformity in the spatial distribution of water resources. The correlation between the nonuniformity of the temporal distribution and local precipitation is small, and no correlation is found between the stability of the nonuniformity of the temporal and spatial distributions of water resources and precipitation. The amount of water resources in Guangdong Province shows an increasing trend from 1956 to 2000, the nonuniformity of the spatial distribution of water resources declines, and the stability of the nonuniformity of the spatial distribution of water resources is enhanced.
基金funded by the National Basic Research Program of China(2009CB825101)the National Natural Science Foundation of China(41071139)
文摘With the classical statistical and geostatistical methods, the study of the spatial distribution and its in- fluence factors of soil water, salinity and organic matter was carried out for 0-70 cm soil layers in Manas River watershed. The results showed that the soil moisture data from all soil layers exhibited a normal distribution, with average values of 14.08%-21.55%. Geostatistical analysis revealed that the content of soil moisture had a moder- ate spatial autocorrelation with the ratios of nugget/sill ranging from 0.500 to 0.718, which implies that the spatial pattern of soil moisture is influenced by the combined effects of structural factors and random factors. Remarkable spatial distributions with stripped and mottled features were found for soil moisture in all different soil layers. The landform and crop planting had a relatively big influence on the spatial distribution of soil moisture; total soil salinity was high in east but low in west, and non-salinized soil and lightly salinized soil appeared at the northwest and southwest of the study area. Under the effect of reservoir leakage, the heavily salinized soils are widely distributed in the middle of the study area. The areas of the non-salinized and lightly salinized soils decreased gradually with soil depth increment, which is contrary to the case for saline soils that reached a maximum of 245.67 km2 at the layer of 50-70 cm. The types of soil salinization in Manas River watershed were classified into four classes: the sulfate, chloride-sulfate, sulfate-chloride and chloride. The sulfate salinized soil is most widely distributed in the surface layer. The areas of chloride-sulfate, sulfate-chloride, and chloride salinized soils increased gradually along with the increment of soil depth; the variation range of the average values of soil organic matter content was be- tween 7.48%-11.33%. The ratios of nugget/sill reduced gradually from 0.698 to 0.299 with soil depth increment, which shows that the content of soil organic matter has a moderate spatial autocorrelation. The soil organic matter in all soil layers met normal distribution after logarithmic transformation. The spatial distribution patterns of soil or- ganic matter and soil moisture were similar; the areas with high organic matter contents were mainly distributed in the south of the study area, with the lowest contents in the middle.
基金The National Natural Science Foundation of China (No. 20477029)the National Basic Research Program (973) of China (No.2004CB418506)the Basic Research Program of Educational Department of Liaoning Government (No. 05L262)
文摘Heavy metal contamination in soils has been of wide concern in China in the last several decades. The heavy metal contamination was caused by sewage irrigation, mining and inappropriate utilization of various agrochemicals and pesticides and so on. The Shenyang Zhangshi irrigation area (SZIA) in China is a representative area of heavy metal contamination of soils resulting from sewage irrigation for about 30 years duration. This study investigated the spatial distribution and temporal variation of soil cadmium contamination in the SZIA. The soil samples were collected from the SZIA in 1990 and 2004; Cd of soils was analyzed and then the spatial distribution and temporal variation of Cd in soils was modelled using kriging methods. The kriging map showed that long-term sewage irrigation had caused serious Cd contamination in topsoil and subsoil. In 2004, the Cd mean concentrations were 1.698 and 0.741 mg/kg, and the maxima 10.150 and 7.567 mg/kg in topsoils (0-20 cm) and subsoils (20-40 cm) respectively. These values are markedly more than the Cd levels in the second grade soil standard in China. In 1990, the Cd means were 1.023 and 0.331 mg/kg, and the maxima 9.400 and 3.156 mg/kg, in topsoils and subsoils respectively. The soil area in 1990 with Cd more than 1.5 mg/kg was 2701 and 206.4 hnl2 in topsoils and subsoils respectively; and in 2004, it was 7592 and 1583 hm^2, respectively. Compared with that in 1990, the mean and maximum concentration of Cd, as well as the soil area with Cd more than 1.5 mg/kg had all increased in 2004, both in topsoils and subsoils.
文摘The investigation was conducted on the spatial and temporal distributions of soil organic mater (SOM) in the mixed plantations of alder (Aluns crernastogyne) and cypress (Cupressus funebris ) (MPAC), which distributed in the hilly areas of central Sichuan Basin (HACSB). The results show that: (1) the spatial distribution of SOM among different sites at the same age are not significant before 15-year-old, but significant at 20-year-old, and not significant again after 25-year-old; (2) the SOM contents in 0-15 cm and 15-30 cm layers increase sharply from 10- to 15-year-old, and decline gradually from 15- to 30- year-old; the SOM contents of the 30-year-old PCP were 80. 38% and 78.42% higher than that of the 10-year-old, but 29.16% and 53.37% lower than that of 15-year-old in the 0-15 cm and 15-30 cm layers, respectively. The decrease of SOM contents would lead to the degradation of soil fertility and the decline of forest productivity.
基金This study was funded under the National Natural Science Foundation of China project(91425302).
文摘Water consumption is a key role in improving the efficiency and sustainability of water management in arid environments.In this study, we explored an approach based on meta-analysis, MODIS NDVI products, land-use spatial distribution, andsoil water physical parameters to gain insight into long-term and large scale distribution of land use and water consumption,maintain maximum Zhangye Oasis area according to Heihe River runoff, and suitable water resource management inZhangye Oasis. This approach was initiated in order to improve the efficiency of irrigation and water resource managementin arid regions. Results showed that Heihe River runoff can maintain a maximum Zhangye Oasis area of 22.49×104 hm2.During the 2000−2016 growing seasons, actual oasis water consumption ranged from 11.35×108 m3 to 13.73×108 m3, witha mean of (12.89 ± 0.60)×108 m3;if maintaining agricultural production and oasis stability was chosen, oasis water consumptionranged from 10.24×108 m3 to 12.37×108 m3, with a mean of (11.62 ± 0.53)×108 m3. From the perspective of waterresources management and ecosystem stability, it is necessary to reduce the area of Zhangye Oasis or choose the minimumwater consumption method to manage the oasis, to ease the pressure of water shortage and maintain stable and sustainabledevelopment of the Zhangye Oasis. These results can provide future practical guidance for water resource management ofcoordinated development of the economy and the environment in an arid area.
文摘Soil salinity is the most important factor affecting vegetation distribution,and the secondary salinization has affected the development of oasis agriculture.In arid areas the spatial variation of soil moisture and sa lt content is marked-ly affected by groundwater,irratio nal irrigation in artificial oasis.By analyzing the soil moisture,salt content and groundwa-ter table in different areas of old oasis,new oasis and desert in Fukang Oa sis,it is shown that topography and l and use are main factors affecting the change of groundwater table,the redistribution of soil moisture and salt cont ent.When undis-turbed by human,the groundwater tab le rises from mountain to belt of grou nd water spillage,the groundwater t able rises mightily in plain because of the artificial irrigation,and the secondary salinization of soil is very seriou s.In oasis the ground-water table raises compared with that in the natural desert at the same latitude.In old oasis of upper reaches o f river salt has not been concentrated too much in rhizosphere because this area is the belt of groundwater drainage,soil t exture is coarse,the groundwater table is very low,and the salt in soil is drained i nto the groundwater.The new oasis has been the areas of salt accumulation becau se of the artificial irrigation,the salt content in soil is higher than th at in old oasis,so some cultivated fields here had to be thrown out because of the serious s econdary salinization.
基金Supported by the China National Natural Science Foundation(31560107)Doctoral Degree Construction Library of Guizhou Minzu University,Education Ministry’s New Century Excellent Talents Supporting Plan(NCET-12-0659)+3 种基金Innovation Group Major Program of Guizhou Province(KY[2013]405,KY[2016]029)Research Projects of Guizhou Province Ministry of Science and Technology(LH[2014]7376)Research Projects of Guizhou Minzu University([2014]02)Research Projects of Guizhou Province Ministry of Education(KY[2014]266)
文摘Based on the investigation data of Jiaozhou Bay waters in 1981,current situation and horizontal distribution of Cr content in bottom waters of Jiaozhou Bay mouth were studied. Results showed that in bottom waters of Jiaozhou Bay center,Cr content changed from 0. 50 to3. 78 μg/L in April. In August,Cr content changed from 0. 14 to 1. 42 μg/L in bottom waters of Jiaozhou Bay mouth. It showed that Cr content corresponded with national class-one seawater quality standard(50. 00 μg/L) at different times and spaces,and Cr content was far less than5. 00 μg/L. Therefore,under the effect of vertical water body,water quality was clean in bottom waters of Jiaozhou Bay,which was not polluted by Cr. In bottom waters of Jiaozhou Bay center in April and bottom waters of Jiaozhou Bay mouth in August,Cr transported by the river came to the bottom layer from surface layer by passing through water body in temporal-spatial change process. Under the effects of gravity and water flow,Cr continuously and quickly sank to the sea bottom. It verified the sedimentation process of Cr content.
基金supported by the Major Science Technology Program for Water Pollution Control and Treatment of China (No. 2018ZX07110)the National Natural Science Foundation of China (Nos. 52070064, 51778054)the Advanced Talents Incubation Program of Hebei University (No. 521000981379)
文摘The temporal and spatial characteristics of urban river bacterial communities help us understand the feedback mechanism of bacteria to changes in the aquatic environment.The Fuhe River plays an important role in determining the water ecological environment of Baiyangdian Lake.16S rRNA gene sequencing was used to study the microbial distribution characteristics in the Fuhe River in different seasons.The results showed that some environmental factors of the surface water(ammonia nitrogen(NH_(3)^(-)N),total nitrogen(TN),and total phosphorus(TP))were different on the spatial and temporal scales.Moreover,there were no seasonal differences in the contents of TN,TP,total organic carbon(TOC),or heavy metals in the sediments.The distributions of Cyanobacteria,Actinomycetes and Firmicutes in the water and Actinomycetes and Planctomycetes in the sediments differed significantly among seasons(P<0.05).There were significant spatial differences in bacteria in the surface water,with the highest abundance of Proteobacteria recorded in the river along with the highest nutrient concentration,while the abundance of Bacteroidetes was higher in the upstream than the downstream.Microbial communities in the water weremost sensitive to temperature(T)and the TP concentration(P<0.01).Moreover,differences in the bacterial community were better explained by the content of heavy metals in the sediments than by the chemical characteristics.A PICRUStmetabolic inference analysis showed that the effect of high summer temperatures on the enzyme action led to an increase in the abundances of the metabolic-related genes of the river microorganisms.
基金financial support received from the National Natural Science Foundation of China(No.20977094)the Science and Technology Development Plan Projects of Weifang(No.2014ZJ1055)
文摘Hexabromocyclododecane(HBCD) is an effective brominated flame-retardant additive, which is mainly produced in the coastal area of China. This study collected soil samples from a HBCD production plant and its surrounding area in Weifang, Shandong Province, China, and analyzed the temporal–spatial distribution of HBCD and its diastereoisomers in soil. The analysis results showed that the concentration of HBCD in soil near the plant was much higher than normal values, with an annual average concentration reaching 5405 ng/g. Soils 1,2 and 4 km away from the plant were also analyzed, showing that the concentration of HBCD in soil decreased accordingly with the distance from the pollution sources. In order to investigate the effect of the season on HBCD content, the soil samples were collected in all four seasons of the year 2017–2018. According to variations in the wind direction, the concentration of HBCD in soil was also changed. The distribution trend showed that the concentration of HBCD in soil in the downwind direction of the prevailing wind was higher than that in the upwind direction. In addition, this work analyzed the distribution of HBCD in vertical soil sections. It was found that the concentration of HBCD decreased with depth in the soil vertical profile. Finally, the various diastereoisomer patterns in the soil compartments were examined, finding that α-HBCD and γ-HBCD were the predominant diastereoisomers in the soil of the study area.
基金supported by the National Natural Science Foundation of China(Grant Nos.40571085 and 90202019)Key Knowledge Innovation Project of the Chinese Academy of Sciences(Grant No.KZCX3-SW-343)National"863"Project(Grant No.2004AA227110-3).
基金Supported by the National Natural Science Foundation of China(Grant Nos.40625001 and 40235054)
文摘The relics of ancient rice have been regarded as the most important objective evidence of the origina- tion and spread of rice cultivation.Based on the records of 280 rice relics sites and the rice cropping regionalization as well as the distribution map of paddy soils,the current study compiled the temporal and spatial distribution map of ancient rice distribution in China.The map shows that the distribution of ancient rice is spatially extensive and meantime comparatively concentrated,temporarily covering a long and relatively continuous time-span.The rice relics in the Central China double and single rice cropping regions are among the earliest and the most abundant ones,possessing continuity in time sequence.Combined with the discovery of ancient rice and paddy filed relics,soil micromorphology, pollen combination and element geochemistry,it is suggested that Central China was the origin center of rice cultivation in China.Rice had been spread to the rest part of China in three major waves,also to the East Asian part like Korea and Japan.The temporal and spatial distribution of ancient rice reflects the past environmental change,which is also meaningful to the current rice regionalization and plan- ning as well as food security in China.