期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Developments and Prospects of Long-Span High-Speed Railway Bridge Technologies in China 被引量:61
1
作者 Shunquan Qin Zongyu Gao 《Engineering》 SCIE EI 2017年第6期787-794,共8页
With the rapid developments of the high-speed railway in China, a great number of long-span bridges have been constructed in order to cross rivers and gorges. At present, the longest main span of a constructed high-sp... With the rapid developments of the high-speed railway in China, a great number of long-span bridges have been constructed in order to cross rivers and gorges. At present, the longest main span of a constructed high-speed railway bridge is only 630 m. The main span of Hutong Yangtze River Bridge and of Wufengshan Yangtze River Bridge, which are under construction, will be much longer, at 1092 m each. In order to overcome the technical issues that originate from the extremely large dead loading and the relatively small structural stiffness of long-span high-speed railway bridges, many new technologies in bridge construction, design, materials, and so forth have been developed. This paper carefully reviews progress in the construction technologies of multi-function combined bridges in China, including com- bined highway and railway bridges and multi-track railway bridges. Innovations and practices regarding new types of bridge and composite bridge structures, such as bridges with three cable planes and three main trusses, inclined main trusses, slab-truss composite sections, and steel-concrete composite sections, are introduced. In addition, investigations into high-performance materials and integral fabrication and erection techniques for long-span railway bridges are summarized. At the end of the paper, prospects for the future development of long-span high-speed railwav bridges are provided. 展开更多
关键词 High-speed railway Long-span bridges Multi-function combined bridges High-performance materials spatial structures with three cable planes Integral fabrication
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部