The extreme rainfall event of July 17 to 22, 2021 in Henan Province, China, led to severe urban waterlogging and flood disasters. This study investigated the performance of high-resolution weather forecasts in predict...The extreme rainfall event of July 17 to 22, 2021 in Henan Province, China, led to severe urban waterlogging and flood disasters. This study investigated the performance of high-resolution weather forecasts in predicting this extreme event and the feasibility of weather forecast-based hydrological forecasts. To achieve this goal, high-resolution precipitation forecasts from the Tianji weather system and the forecast system of the European Centre for Medium-Range Weather Forecasts (ECMWF) were evaluated with the spatial verification metrics of structure, amplitude, and location. The results showed that Tianji weather forecasts accurately predicted the amplitude of 12-h accumulated precipitation with a lead time of 12 h. The location and structure of the rainfall areas in Tianji forecasts were closer to the observations than ECMWF forecasts. Tianji hourly precipitation forecasts were also more accurate than ECMWF hourly forecasts, especially at lead times shorter than 8 h. The precipitation forecasts were used as the inputs to a hydrological model to evaluate their hydrological applications. The results showed that the runoff forecasts driven by Tianji weather forecasts could effectively predict the extreme flood event. The runoff forecasts driven by Tianji forecasts were more accurate than those driven by ECMWF forecasts in terms of amplitude and location. This study demonstrates that high-resolution weather forecasts and corresponding hydrological forecasts can provide valuable information in advance for disaster warnings and leave time for people to act on the event. The results encourage further hydrological applications of high-resolution weather forecasts, such as Tianji weather forecasts, in the future.展开更多
This paper discusses the history and present status of different categories of biogas production in China,most of which are classified into rural household production,agriculture-based engineering production,and indus...This paper discusses the history and present status of different categories of biogas production in China,most of which are classified into rural household production,agriculture-based engineering production,and industry-based engineering production.To evaluate the future biogas production of China,five models including the Hubbert model,the Weibull model,the generalized Weng model,the H-C-Z model,and the Grey model are applied to analyze and forecast the biogas production of each province and the entire country.It is proved that those models which originated from oil research can also be applied to other energy sources.The simulation results reveal that China's total biogas production is unlikely to keep on a fast-growing trend in the next few years,mainly due to a recent decrease in rural household production,and this greatly differs from the previous goal set by the official department.In addition,China's biogas production will present a more uneven pattern among regions in the future.This paper will give preliminary explanation for the regional difference of the three biogas sectors and propose some recommendations for instituting corresponding policies and strategies to promote the development of the biogas industry in China.展开更多
基金supported by the National Natural Science Foundation of China(Grants No.42105142 and 51979004)the Fundamental Research Funds for the Central Universities(Grant No.B210202014)the China PostDoctoral Science Foundation(Grant No.2021M701045).
文摘The extreme rainfall event of July 17 to 22, 2021 in Henan Province, China, led to severe urban waterlogging and flood disasters. This study investigated the performance of high-resolution weather forecasts in predicting this extreme event and the feasibility of weather forecast-based hydrological forecasts. To achieve this goal, high-resolution precipitation forecasts from the Tianji weather system and the forecast system of the European Centre for Medium-Range Weather Forecasts (ECMWF) were evaluated with the spatial verification metrics of structure, amplitude, and location. The results showed that Tianji weather forecasts accurately predicted the amplitude of 12-h accumulated precipitation with a lead time of 12 h. The location and structure of the rainfall areas in Tianji forecasts were closer to the observations than ECMWF forecasts. Tianji hourly precipitation forecasts were also more accurate than ECMWF hourly forecasts, especially at lead times shorter than 8 h. The precipitation forecasts were used as the inputs to a hydrological model to evaluate their hydrological applications. The results showed that the runoff forecasts driven by Tianji weather forecasts could effectively predict the extreme flood event. The runoff forecasts driven by Tianji forecasts were more accurate than those driven by ECMWF forecasts in terms of amplitude and location. This study demonstrates that high-resolution weather forecasts and corresponding hydrological forecasts can provide valuable information in advance for disaster warnings and leave time for people to act on the event. The results encourage further hydrological applications of high-resolution weather forecasts, such as Tianji weather forecasts, in the future.
基金supported by the National Natural Science Foundation of China (Grant No.71171102)
文摘This paper discusses the history and present status of different categories of biogas production in China,most of which are classified into rural household production,agriculture-based engineering production,and industry-based engineering production.To evaluate the future biogas production of China,five models including the Hubbert model,the Weibull model,the generalized Weng model,the H-C-Z model,and the Grey model are applied to analyze and forecast the biogas production of each province and the entire country.It is proved that those models which originated from oil research can also be applied to other energy sources.The simulation results reveal that China's total biogas production is unlikely to keep on a fast-growing trend in the next few years,mainly due to a recent decrease in rural household production,and this greatly differs from the previous goal set by the official department.In addition,China's biogas production will present a more uneven pattern among regions in the future.This paper will give preliminary explanation for the regional difference of the three biogas sectors and propose some recommendations for instituting corresponding policies and strategies to promote the development of the biogas industry in China.