We theoretically study the selection of the quantum path in high-order harmonics(HHG) and isolated attosecond pulse generation from a one-dimensional(1D) model of a H_2~+ molecule in few-cycle inhomogeneous laser...We theoretically study the selection of the quantum path in high-order harmonics(HHG) and isolated attosecond pulse generation from a one-dimensional(1D) model of a H_2~+ molecule in few-cycle inhomogeneous laser fields.We show that the inhomogeneity of the laser fields play an important role in the HHG process.The cutoff of the harmonics can be extended remarkably,and the harmonic spectrum becomes smooth and has fewer modulations.We investigate the time-frequency profile of the time-dependent dipole,which shows that the short quantum path is enhanced and the long quantum path disappears in spatially inhomogeneous fields.The semi-classical three-step model is also applied to illustrate the physical mechanism of HHG.The influence of driving field carrier-envelop phase(CEP) on HHG is also discussed.By superposing a series of properly selected harmonics,an isolated attosecond pulse(IAP) with duration 53 as can be obtained by a 15-fs,1600-nm laser pulse with the parameter ε = 0.0013(e is the parameter that determines the order of inhomogeneity of the laser field).展开更多
The effect of multiple rescattering processes on the harmonic emission from He atom in a spatially inhomogeneous field is discussed by solving the one-dimensional time-dependent Schrtdinger equation and the classical ...The effect of multiple rescattering processes on the harmonic emission from He atom in a spatially inhomogeneous field is discussed by solving the one-dimensional time-dependent Schrtdinger equation and the classical equation of motion. By establishing the physical model of the harmonic emission in the inhomogeneous field, we discuss the related characters of the multiple rescatterings process in the harmonic generation process. It shows that the second rescattering rather than the first rescattering tends to determine the harmonic cutoff energy when the inhomogeneous parameter is larger than 0.0055. Additionally, with the classica/simulation, the underlying physical mechanism of the continuum-continuum harmonics is also revealed. Moreover, this work may provide new physical insight into the harmonic generation in an inhomogeneous field, and is beneficial to further extract the harnaonic emission from molecular systems.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.11174108,11104108,and 11271158)
文摘We theoretically study the selection of the quantum path in high-order harmonics(HHG) and isolated attosecond pulse generation from a one-dimensional(1D) model of a H_2~+ molecule in few-cycle inhomogeneous laser fields.We show that the inhomogeneity of the laser fields play an important role in the HHG process.The cutoff of the harmonics can be extended remarkably,and the harmonic spectrum becomes smooth and has fewer modulations.We investigate the time-frequency profile of the time-dependent dipole,which shows that the short quantum path is enhanced and the long quantum path disappears in spatially inhomogeneous fields.The semi-classical three-step model is also applied to illustrate the physical mechanism of HHG.The influence of driving field carrier-envelop phase(CEP) on HHG is also discussed.By superposing a series of properly selected harmonics,an isolated attosecond pulse(IAP) with duration 53 as can be obtained by a 15-fs,1600-nm laser pulse with the parameter ε = 0.0013(e is the parameter that determines the order of inhomogeneity of the laser field).
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11404204,11274215,and 11504221)the Natural Science Foundation for Young Scientists of Shanxi Province,China(Grant No.2015021023)+1 种基金Program for the Top Young Academic Leaders of Higher Learning Institutions of Shanxi Province,ChinaInnovation Project for Postgraduates of Shanxi Province,China(Grant No.2017BY085)
文摘The effect of multiple rescattering processes on the harmonic emission from He atom in a spatially inhomogeneous field is discussed by solving the one-dimensional time-dependent Schrtdinger equation and the classical equation of motion. By establishing the physical model of the harmonic emission in the inhomogeneous field, we discuss the related characters of the multiple rescatterings process in the harmonic generation process. It shows that the second rescattering rather than the first rescattering tends to determine the harmonic cutoff energy when the inhomogeneous parameter is larger than 0.0055. Additionally, with the classica/simulation, the underlying physical mechanism of the continuum-continuum harmonics is also revealed. Moreover, this work may provide new physical insight into the harmonic generation in an inhomogeneous field, and is beneficial to further extract the harnaonic emission from molecular systems.