This study used spatial autoregression(SAR)model and geographically weighted regression(GWR)model to model the spatial patterns of farmland density and its temporal change in Gucheng County,Hubei Province,China in 199...This study used spatial autoregression(SAR)model and geographically weighted regression(GWR)model to model the spatial patterns of farmland density and its temporal change in Gucheng County,Hubei Province,China in 1999 and 2009,and discussed the difference between global and local spatial autocorrelations in terms of spatial heterogeneity and non-stationarity.Results showed that strong spatial positive correlations existed in the spatial distributions of farmland density,its temporal change and the driving factors,and the coefficients of spatial autocorrelations decreased as the spatial lag distance increased.SAR models revealed the global spatial relations between dependent and independent variables,while the GWR model showed the spatially varying fitting degree and local weighting coefficients of driving factors and farmland indices(i.e.,farmland density and temporal change).The GWR model has smooth process when constructing the farmland spatial model.The coefficients of GWR model can show the accurate influence degrees of different driving factors on the farmland at different geographical locations.The performance indices of GWR model showed that GWR model produced more accurate simulation results than other models at different times,and the improvement precision of GWR model was obvious.The global and local farmland models used in this study showed different characteristics in the spatial distributions of farmland indices at different scales,which may provide the theoretical basis for farmland protection from the influence of different driving factors.展开更多
Some fundamental issues on statistical inferences relating to varying-coefficient regression models are addressed and studied. An exact testing procedure is proposed for checking the goodness of fit of a varying-coeff...Some fundamental issues on statistical inferences relating to varying-coefficient regression models are addressed and studied. An exact testing procedure is proposed for checking the goodness of fit of a varying-coefficient model fited by the locally weighted regression technique versus an ordinary linear regression model. Also, an appropriate statistic for testing variation of model parameters over the locations where the observations are collected is constructed and a formal testing approach which is essential to exploring spatial non-stationarity in geography science is suggested.展开更多
Existing spatial interpolation methods estimate the property values of an unmeasured point with observations of its closest points based on spatial distance(SD).However,considering that properties of the neighbors spa...Existing spatial interpolation methods estimate the property values of an unmeasured point with observations of its closest points based on spatial distance(SD).However,considering that properties of the neighbors spatially close to the unmeasured point may not be similar,the estimation of properties at the unmeasured one may not be accurate.The present study proposed a local attribute-similarity weighted regression(LASWR)algorithm,which characterized the similarity among spatial points based on non-spatial attributes(NSA)better than on SD.The real soil datasets were used in the validation.Mean absolute error(MAE)and root mean square error(RMSE)were used to compare the performance of LASWR with inverse distance weighting(IDW),ordinary kriging(OK)and geographically weighted regression(GWR).Cross-validation showed that LASWR generally resulted in more accurate predictions than IDW and OK and produced a finer-grained characterization of the spatial relationships between SOC and environmental variables relative to GWR.The present research results suggest that LASWR can play a vital role in improving prediction accuracy and characterizing the influence patterns of environmental variables on response variable.展开更多
基金Under the auspices of National Natural Science Foundation of China(No.40601073,41101192,41201571)Fundamental Research Funds for the Central Universities(No.2011PY112,2011QC041,2011QC091)Huazhong Agricultural University Scientific&Technological Self-innovation Foundation(No.2011SC21)
文摘This study used spatial autoregression(SAR)model and geographically weighted regression(GWR)model to model the spatial patterns of farmland density and its temporal change in Gucheng County,Hubei Province,China in 1999 and 2009,and discussed the difference between global and local spatial autocorrelations in terms of spatial heterogeneity and non-stationarity.Results showed that strong spatial positive correlations existed in the spatial distributions of farmland density,its temporal change and the driving factors,and the coefficients of spatial autocorrelations decreased as the spatial lag distance increased.SAR models revealed the global spatial relations between dependent and independent variables,while the GWR model showed the spatially varying fitting degree and local weighting coefficients of driving factors and farmland indices(i.e.,farmland density and temporal change).The GWR model has smooth process when constructing the farmland spatial model.The coefficients of GWR model can show the accurate influence degrees of different driving factors on the farmland at different geographical locations.The performance indices of GWR model showed that GWR model produced more accurate simulation results than other models at different times,and the improvement precision of GWR model was obvious.The global and local farmland models used in this study showed different characteristics in the spatial distributions of farmland indices at different scales,which may provide the theoretical basis for farmland protection from the influence of different driving factors.
基金the National Natural Science Foundation of China (No.60075001) and Xi'anJiaotong University Natural Science Foundation.
文摘Some fundamental issues on statistical inferences relating to varying-coefficient regression models are addressed and studied. An exact testing procedure is proposed for checking the goodness of fit of a varying-coefficient model fited by the locally weighted regression technique versus an ordinary linear regression model. Also, an appropriate statistic for testing variation of model parameters over the locations where the observations are collected is constructed and a formal testing approach which is essential to exploring spatial non-stationarity in geography science is suggested.
基金supported by National Natural Science Foundation(41201299)the Ministry of Water Resources Public Welfare Industry Scientific Research Special(201501055).
文摘Existing spatial interpolation methods estimate the property values of an unmeasured point with observations of its closest points based on spatial distance(SD).However,considering that properties of the neighbors spatially close to the unmeasured point may not be similar,the estimation of properties at the unmeasured one may not be accurate.The present study proposed a local attribute-similarity weighted regression(LASWR)algorithm,which characterized the similarity among spatial points based on non-spatial attributes(NSA)better than on SD.The real soil datasets were used in the validation.Mean absolute error(MAE)and root mean square error(RMSE)were used to compare the performance of LASWR with inverse distance weighting(IDW),ordinary kriging(OK)and geographically weighted regression(GWR).Cross-validation showed that LASWR generally resulted in more accurate predictions than IDW and OK and produced a finer-grained characterization of the spatial relationships between SOC and environmental variables relative to GWR.The present research results suggest that LASWR can play a vital role in improving prediction accuracy and characterizing the influence patterns of environmental variables on response variable.