Currently,more than ten ultrahigh arch dams have been constructed or are being constructed in China.Safety control is essential to long-term operation of these dams.This study employed the flexibility coefficient and ...Currently,more than ten ultrahigh arch dams have been constructed or are being constructed in China.Safety control is essential to long-term operation of these dams.This study employed the flexibility coefficient and plastic complementary energy norm to assess the structural safety of arch dams.A comprehensive analysis was conducted,focusing on differences among conventional methods in characterizing the structural behavior of the Xiaowan arch dam in China.Subsequently,the spatiotemporal characteristics of the measured performance of the Xiaowan dam were explored,including periodicity,convergence,and time-effect characteristics.These findings revealed the governing mechanism of main factors.Furthermore,a heterogeneous spatial panel vector model was developed,considering both common factors and specific factors affecting the safety and performance of arch dams.This model aims to comprehensively illustrate spatial heterogeneity between the entire structure and local regions,introducing a specific effect quantity to characterize local deformation differences.Ultimately,the proposed model was applied to the Xiaowan arch dam,accurately quantifying the spatiotemporal heterogeneity of dam performance.Additionally,the spatiotemporal distri-bution characteristics of environmental load effects on different parts of the dam were reasonably interpreted.Validation of the model prediction enhances its credibility,leading to the formulation of health diagnosis criteria for future long-term operation of the Xiaowan dam.The findings not only enhance the predictive ability and timely control of ultrahigh arch dams'performance but also provide a crucial basis for assessing the effectiveness of engineering treatment measures.展开更多
Panel data combine cross-section data and time series data. If the cross-section is locations, there is a need to check the correlation among locations. ρ and λ are parameters in generalized spatial model to cover e...Panel data combine cross-section data and time series data. If the cross-section is locations, there is a need to check the correlation among locations. ρ and λ are parameters in generalized spatial model to cover effect of correlation between locations. Value of ρ or λ will influence the goodness of fit model, so it is important to make parameter estimation. The effect of another location is covered by making contiguity matrix until it gets spatial weighted matrix (W). There are some types of W—uniform W, binary W, kernel Gaussian W and some W from real case of economics condition or transportation condition from locations. This study is aimed to compare uniform W and kernel Gaussian W in spatial panel data model using RMSE value. The result of analysis showed that uniform weight had RMSE value less than kernel Gaussian model. Uniform W had stabil value for all the combinations.展开更多
To improve the performance of the traditional map matching algorithms in freeway traffic state monitoring systems using the low logging frequency GPS (global positioning system) probe data, a map matching algorithm ...To improve the performance of the traditional map matching algorithms in freeway traffic state monitoring systems using the low logging frequency GPS (global positioning system) probe data, a map matching algorithm based on the Oracle spatial data model is proposed. The algorithm uses the Oracle road network data model to analyze the spatial relationships between massive GPS positioning points and freeway networks, builds an N-shortest path algorithm to find reasonable candidate routes between GPS positioning points efficiently, and uses the fuzzy logic inference system to determine the final matched traveling route. According to the implementation with field data from Los Angeles, the computation speed of the algorithm is about 135 GPS positioning points per second and the accuracy is 98.9%. The results demonstrate the effectiveness and accuracy of the proposed algorithm for mapping massive GPS positioning data onto freeway networks with complex geometric characteristics.展开更多
In this review, we highlight some recent methodological and theoretical develop- ments in estimation and testing of large panel data models with cross-sectional dependence. The paper begins with a discussion of issues...In this review, we highlight some recent methodological and theoretical develop- ments in estimation and testing of large panel data models with cross-sectional dependence. The paper begins with a discussion of issues of cross-sectional dependence, and introduces the concepts of weak and strong cross-sectional dependence. Then, the main attention is primarily paid to spatial and factor approaches for modeling cross-sectional dependence for both linear and nonlinear (nonparametric and semiparametric) panel data models. Finally, we conclude with some speculations on future research directions.展开更多
This paper presents a conceptual data model, the STA-model, for handling spatial, temporal and attribute aspects of objects in GIS. The model is developed on the basis of object-oriented modeling approach. This model ...This paper presents a conceptual data model, the STA-model, for handling spatial, temporal and attribute aspects of objects in GIS. The model is developed on the basis of object-oriented modeling approach. This model includes two major parts: (a) modeling the signal objects by STA-object elements, and (b) modeling relationships between STA-objects. As an example, the STA-model is applied for modeling land cover change data with spatial, temporal and attribute components.展开更多
We used simulated data to investigate both the small and large sample properties of the within-groups (WG) estimator and the first difference generalized method of moments (FD-GMM) estimator of a dynamic panel data (D...We used simulated data to investigate both the small and large sample properties of the within-groups (WG) estimator and the first difference generalized method of moments (FD-GMM) estimator of a dynamic panel data (DPD) model. The magnitude of WG and FD-GMM estimates are almost the same for square panels. WG estimator performs best for long panels such as those with time dimension as large as 50. The advantage of FD-GMM estimator however, is observed on panels that are long and wide, say with time dimension at least 25 and cross-section dimension size of at least 30. For small-sized panels, the two methods failed since their optimality was established in the context of asymptotic theory. We developed parametric bootstrap versions of WG and FD-GMM estimators. Simulation study indicates the advantages of the bootstrap methods under small sample cases on the assumption that variances of the individual effects and the disturbances are of similar magnitude. The boostrapped WG and FD-GMM estimators are optimal for small samples.展开更多
It is clearly stated in the 19th people's congress that we should make the environmental protection as our national policy. Therefore, it is of great importance to study this issue. This article is going to consid...It is clearly stated in the 19th people's congress that we should make the environmental protection as our national policy. Therefore, it is of great importance to study this issue. This article is going to consider 30 provinces of China as the cross-section, and utilize the data sample from 2006 to 2015 of these cross-sections to formulate a Spatial Panel Data Durbin Model to analyze the effect of FDI. By using these data, this article creates a comprehensive environmental pollution index with the help of entropy. The result indicates that the effect of FDI on environment has a non-linear and spatial spillover characteristic. Before reaching the critical value, FDI has a negative effect on environment; however, with the accumulation of FDI, it will create a significant positive effect on the environment.展开更多
Spatial heterogeneity refers to the variation or differences in characteristics or features across different locations or areas in space. Spatial data refers to information that explicitly or indirectly belongs to a p...Spatial heterogeneity refers to the variation or differences in characteristics or features across different locations or areas in space. Spatial data refers to information that explicitly or indirectly belongs to a particular geographic region or location, also known as geo-spatial data or geographic information. Focusing on spatial heterogeneity, we present a hybrid machine learning model combining two competitive algorithms: the Random Forest Regressor and CNN. The model is fine-tuned using cross validation for hyper-parameter adjustment and performance evaluation, ensuring robustness and generalization. Our approach integrates Global Moran’s I for examining global autocorrelation, and local Moran’s I for assessing local spatial autocorrelation in the residuals. To validate our approach, we implemented the hybrid model on a real-world dataset and compared its performance with that of the traditional machine learning models. Results indicate superior performance with an R-squared of 0.90, outperforming RF 0.84 and CNN 0.74. This study contributed to a detailed understanding of spatial variations in data considering the geographical information (Longitude & Latitude) present in the dataset. Our results, also assessed using the Root Mean Squared Error (RMSE), indicated that the hybrid yielded lower errors, showing a deviation of 53.65% from the RF model and 63.24% from the CNN model. Additionally, the global Moran’s I index was observed to be 0.10. This study underscores that the hybrid was able to predict correctly the house prices both in clusters and in dispersed areas.展开更多
Understanding the behavior of urban air pollution is important en route for sustainable urban development (SUD). Malaysia is on its mission to be a developed country by year 2020 comprehends dealing with air pollution...Understanding the behavior of urban air pollution is important en route for sustainable urban development (SUD). Malaysia is on its mission to be a developed country by year 2020 comprehends dealing with air pollution is one of the indicators headed towards it. At present monitoring and managing air pollution in urban areas encompasses sophisticated air quality modeling and data acquisition. However, rapid developments in major cities cause difficulties in acquiring the city geometries. The existing method in acquiring city geometries data via ground or space measurement inspection such as field survey, photogrammetry, laser scanning, remote sensing or using architectural plans appears not to be practical because of its cost and efforts. Moreover, air monitoring stations deployed are intended for regional to global scale model whereby it is not accurate for urban areas with typical resolution of less than 2 km. Furthermore in urban areas, the pollutant dispersion movements are trapped between buildings initiating it to move vertically causing visualization complications which imply the limitations of existing visualization scheme that is based on two-dimensional (2D) framework. Therefore this paper aims is to perform groundwork assessment and discuss on the current scenario in Malaysia in the aspect of current policies towards SUD, air quality monitoring stations, scale model and detail discussion on air pollution dispersion model used called the Operational Street Pollution Model (OSPM). This research proposed the implementation of three-dimensional (3D) spatial city model as a new physical data input for OSPM. The five Level of Details (LOD) of 3D spatial city model shows the scale applicability for the dispersion model implementtation. Subsequently 3D spatial city model data commonly available on the web, by having a unified data model shows the advantages in easy data acquisition, 3D visualization of air pollution dispersion and improves visual analysis of air quality monitoring in urban areas.展开更多
In view of the extensive growth of China's steel production in recent years, this paper analyzed the industrial development background and economic geography theory, and discussed the possible spatial interaction ...In view of the extensive growth of China's steel production in recent years, this paper analyzed the industrial development background and economic geography theory, and discussed the possible spatial interaction mechanism. Based on panel data of China's inter-provincial steel output from 2001 to 2015, using spatial econometric model, this paper also explored whether China's provincial steel production shows material orientation, market orientation and traffic orientation, and isolated spatial interactions of interprovincial steel output. The results showed that the inter-provincial steel production in China did show both material orientation, market orientation and traffic orientation and that there was a significant negative spatial interaction, indicating that there might be strong competition and a crowing-out effect between neighboring provinces, and that the smaller the spatial scope, the more significant the spatial interactions of steel production.展开更多
The intensity of environmental regulation (ERI) affects the short-term effect of the level of green mining (GML),and which structure determines the long-term mechanism.Based on the panel data from 2001 to 2015,with th...The intensity of environmental regulation (ERI) affects the short-term effect of the level of green mining (GML),and which structure determines the long-term mechanism.Based on the panel data from 2001 to 2015,with the dynamic panel model and system GMM estimation method were employed to test the influence of heterogeneous environmental regulation on green mining and its transmission mechanism.The results show that,there is a 'U' type nonlinear relationship between the ERI and GML.The direct effect of command-control-based (CAC) and the market incentive-based (MBI) environmental regulation on green development of mining shows the characteristics of inhibition and promotion.There is a 'U' type of indirectly moderating effect between technological innovation and the energy consumption structure on the GML.The technological innovation promotes the green development of the mining industry only after pass the inflection point of MBI,while the CAC plays a significant guiding role in upgrading of the energy consumption structure.There is an inhibition and promotion effect of MBI on the GML in the southeast coastal area,and the CAC is not significantly.Meanwhile,both of the ERI shows no positive effects in the central and western inland region.展开更多
This article considers 30 provinces of China as the cross-section subjects, and utilizes the data sample from 2009 to 2015 of these cross-sections to formulate a Spatial Panel Data Durbin Model to analyze the effect o...This article considers 30 provinces of China as the cross-section subjects, and utilizes the data sample from 2009 to 2015 of these cross-sections to formulate a Spatial Panel Data Durbin Model to analyze the effect of environmental regulation on employment. The result indicates that environmental regulation has negative effect on employment with the consideration of spatial spillover effect, and this adverse effect is not significant mathematically. With the enhance of environmental regulation, the negative impact on employment will decrease accordingly, even may eventually promote job growth, which means there may be a non-linear relationship between them. Specifically, the direct effect of environmental regulation on employment indicates that it is beneficial for job growth whereas the indirect effect illustrate that it is detrimental for employment.展开更多
In general, geospatial data can be divided into two formats, raster and vector formats. A raster consists of a matrix of cells where each cell contains a value representing quantitative information, such as temperatur...In general, geospatial data can be divided into two formats, raster and vector formats. A raster consists of a matrix of cells where each cell contains a value representing quantitative information, such as temperature, vegetation intensity, land use/cover, elevation, etc. A vector data consists of points, lines and polygons representing location or distance or area of landscape features in graphical forms. Many raster data are derived from remote sensing techniques using sophisticated sensors by quantitative approach and many vector data are generated from GIS processes by qualitative approach. Among them, land use/cover data is frequently used in many GIS analyses and spatial modeling processes. However, proper use of quantitative and qualitative geospatial data is important in spatial modeling and decision making. In this article, we discuss common geospatial data formats, their origins and proper use in spatial modelling and decision making processes.展开更多
This paper proposes some additional moment conditions for the linear feedback model with explanatory variables being predetermined, which is proposed by [1] for the purpose of dealing with count panel data. The newly ...This paper proposes some additional moment conditions for the linear feedback model with explanatory variables being predetermined, which is proposed by [1] for the purpose of dealing with count panel data. The newly proposed moment conditions include those associated with the equidispersion, the Negbin I-type model and the stationarity. The GMM estimators are constructed incorporating the additional moment conditions. Some Monte Carlo experiments indicate that the GMM estimators incorporating the additional moment conditions perform well, compared to that using only the conventional moment conditions proposed by [2,3].展开更多
The Multi-source spatial data distribution is based on WebGIS, and it is an important part of multi-source geographic information management system. a new multi-source spatial data distribution model is proposed on th...The Multi-source spatial data distribution is based on WebGIS, and it is an important part of multi-source geographic information management system. a new multi-source spatial data distribution model is proposed on the basis of multisource data storage model and by combining existing map distribution technology, The author developed a multi-source spatial data distribution system which based on MapGIS K9 by using this model and taking full advantage of interfacecode separating thinking and high efficiency characteristic of .net, so high-speed distribution of multi-source spatial data realized.展开更多
In allusion to the difficulty of integrating data with different models in integrating spatial information, the characteristics of raster structure, vector structure and mixed model were analyzed, and a hierarchical v...In allusion to the difficulty of integrating data with different models in integrating spatial information, the characteristics of raster structure, vector structure and mixed model were analyzed, and a hierarchical vector-raster integrative full feature model was put forward by integrating the advantage of vector and raster model and using the object-oriented method. The data structures of the four basic features, i.e. point, line, surface and solid, were described. An application was analyzed and described, and the characteristics of this model were described. In this model, all objects in the real world are divided into and described as features with hierarchy, and all the data are organized in vector. This model can describe data based on feature, field, network and other models, and avoid the disadvantage of inability to integrate data based on different models and perform spatial analysis on them in spatial information integration.展开更多
Presented a study on the design and implementation of spatial data modelingand application in the spatial data organization and management of a coalfield geologicalenvironment database.Based on analysis of a number of...Presented a study on the design and implementation of spatial data modelingand application in the spatial data organization and management of a coalfield geologicalenvironment database.Based on analysis of a number of existing data models and takinginto account the unique data structure and characteristic, methodology and key techniquesin the object-oriented spatial data modeling were proposed for the coalfield geological environment.The model building process was developed using object-oriented technologyand the Unified Modeling Language (UML) on the platform of ESRI geodatabase datamodels.A case study of spatial data modeling in UML was presented with successful implementationin the spatial database of the coalfield geological environment.The modelbuilding and implementation provided an effective way of representing the complexity andspecificity of coalfield geological environment spatial data and an integrated managementof spatial and property data.展开更多
The study of spatial econometrics has developed rapidly and has found wide applications in many different scientific fields,such as demography,epidemiology,regional economics,and psychology.With the deepening of...The study of spatial econometrics has developed rapidly and has found wide applications in many different scientific fields,such as demography,epidemiology,regional economics,and psychology.With the deepening of research,some scholars find that there are some model specifications in spatial econometrics,such as spatial autoregressive(SAR)model and matrix exponential spatial specification(MESS),which cannot be nested within each other.Compared with the common SAR models,the MESS models have computational advantages because it eliminates the need for logarithmic determinant calculation in maximum likelihood estimation and Bayesian estimation.Meanwhile,MESS models have theoretical advantages.However,the theoretical research and application of MESS models have not been promoted vigorously.Therefore,the study of MESS model theory has practical significance.This paper studies the quasi maximum likelihood estimation for matrix exponential spatial specification(MESS)varying coefficient panel data models with fixed effects.It is shown that the estimators of model parameters and function coefficients satisfy the consistency and asymptotic normality to make a further supplement for the theoretical study of MESS model.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.52079046).
文摘Currently,more than ten ultrahigh arch dams have been constructed or are being constructed in China.Safety control is essential to long-term operation of these dams.This study employed the flexibility coefficient and plastic complementary energy norm to assess the structural safety of arch dams.A comprehensive analysis was conducted,focusing on differences among conventional methods in characterizing the structural behavior of the Xiaowan arch dam in China.Subsequently,the spatiotemporal characteristics of the measured performance of the Xiaowan dam were explored,including periodicity,convergence,and time-effect characteristics.These findings revealed the governing mechanism of main factors.Furthermore,a heterogeneous spatial panel vector model was developed,considering both common factors and specific factors affecting the safety and performance of arch dams.This model aims to comprehensively illustrate spatial heterogeneity between the entire structure and local regions,introducing a specific effect quantity to characterize local deformation differences.Ultimately,the proposed model was applied to the Xiaowan arch dam,accurately quantifying the spatiotemporal heterogeneity of dam performance.Additionally,the spatiotemporal distri-bution characteristics of environmental load effects on different parts of the dam were reasonably interpreted.Validation of the model prediction enhances its credibility,leading to the formulation of health diagnosis criteria for future long-term operation of the Xiaowan dam.The findings not only enhance the predictive ability and timely control of ultrahigh arch dams'performance but also provide a crucial basis for assessing the effectiveness of engineering treatment measures.
文摘Panel data combine cross-section data and time series data. If the cross-section is locations, there is a need to check the correlation among locations. ρ and λ are parameters in generalized spatial model to cover effect of correlation between locations. Value of ρ or λ will influence the goodness of fit model, so it is important to make parameter estimation. The effect of another location is covered by making contiguity matrix until it gets spatial weighted matrix (W). There are some types of W—uniform W, binary W, kernel Gaussian W and some W from real case of economics condition or transportation condition from locations. This study is aimed to compare uniform W and kernel Gaussian W in spatial panel data model using RMSE value. The result of analysis showed that uniform weight had RMSE value less than kernel Gaussian model. Uniform W had stabil value for all the combinations.
文摘To improve the performance of the traditional map matching algorithms in freeway traffic state monitoring systems using the low logging frequency GPS (global positioning system) probe data, a map matching algorithm based on the Oracle spatial data model is proposed. The algorithm uses the Oracle road network data model to analyze the spatial relationships between massive GPS positioning points and freeway networks, builds an N-shortest path algorithm to find reasonable candidate routes between GPS positioning points efficiently, and uses the fuzzy logic inference system to determine the final matched traveling route. According to the implementation with field data from Los Angeles, the computation speed of the algorithm is about 135 GPS positioning points per second and the accuracy is 98.9%. The results demonstrate the effectiveness and accuracy of the proposed algorithm for mapping massive GPS positioning data onto freeway networks with complex geometric characteristics.
基金Supported by the National Natural Science Foundation of China(71131008(Key Project)and 71271179)
文摘In this review, we highlight some recent methodological and theoretical develop- ments in estimation and testing of large panel data models with cross-sectional dependence. The paper begins with a discussion of issues of cross-sectional dependence, and introduces the concepts of weak and strong cross-sectional dependence. Then, the main attention is primarily paid to spatial and factor approaches for modeling cross-sectional dependence for both linear and nonlinear (nonparametric and semiparametric) panel data models. Finally, we conclude with some speculations on future research directions.
文摘This paper presents a conceptual data model, the STA-model, for handling spatial, temporal and attribute aspects of objects in GIS. The model is developed on the basis of object-oriented modeling approach. This model includes two major parts: (a) modeling the signal objects by STA-object elements, and (b) modeling relationships between STA-objects. As an example, the STA-model is applied for modeling land cover change data with spatial, temporal and attribute components.
文摘We used simulated data to investigate both the small and large sample properties of the within-groups (WG) estimator and the first difference generalized method of moments (FD-GMM) estimator of a dynamic panel data (DPD) model. The magnitude of WG and FD-GMM estimates are almost the same for square panels. WG estimator performs best for long panels such as those with time dimension as large as 50. The advantage of FD-GMM estimator however, is observed on panels that are long and wide, say with time dimension at least 25 and cross-section dimension size of at least 30. For small-sized panels, the two methods failed since their optimality was established in the context of asymptotic theory. We developed parametric bootstrap versions of WG and FD-GMM estimators. Simulation study indicates the advantages of the bootstrap methods under small sample cases on the assumption that variances of the individual effects and the disturbances are of similar magnitude. The boostrapped WG and FD-GMM estimators are optimal for small samples.
基金supported by the Hubei Province Educational Division Social Science Research Project(Grant No.15G051)
文摘It is clearly stated in the 19th people's congress that we should make the environmental protection as our national policy. Therefore, it is of great importance to study this issue. This article is going to consider 30 provinces of China as the cross-section, and utilize the data sample from 2006 to 2015 of these cross-sections to formulate a Spatial Panel Data Durbin Model to analyze the effect of FDI. By using these data, this article creates a comprehensive environmental pollution index with the help of entropy. The result indicates that the effect of FDI on environment has a non-linear and spatial spillover characteristic. Before reaching the critical value, FDI has a negative effect on environment; however, with the accumulation of FDI, it will create a significant positive effect on the environment.
文摘Spatial heterogeneity refers to the variation or differences in characteristics or features across different locations or areas in space. Spatial data refers to information that explicitly or indirectly belongs to a particular geographic region or location, also known as geo-spatial data or geographic information. Focusing on spatial heterogeneity, we present a hybrid machine learning model combining two competitive algorithms: the Random Forest Regressor and CNN. The model is fine-tuned using cross validation for hyper-parameter adjustment and performance evaluation, ensuring robustness and generalization. Our approach integrates Global Moran’s I for examining global autocorrelation, and local Moran’s I for assessing local spatial autocorrelation in the residuals. To validate our approach, we implemented the hybrid model on a real-world dataset and compared its performance with that of the traditional machine learning models. Results indicate superior performance with an R-squared of 0.90, outperforming RF 0.84 and CNN 0.74. This study contributed to a detailed understanding of spatial variations in data considering the geographical information (Longitude & Latitude) present in the dataset. Our results, also assessed using the Root Mean Squared Error (RMSE), indicated that the hybrid yielded lower errors, showing a deviation of 53.65% from the RF model and 63.24% from the CNN model. Additionally, the global Moran’s I index was observed to be 0.10. This study underscores that the hybrid was able to predict correctly the house prices both in clusters and in dispersed areas.
基金Major funding for this research was provided by the Ministry of Higher Education Malaysia and partially funded by the Land Surveyors Board of Malaysia.
文摘Understanding the behavior of urban air pollution is important en route for sustainable urban development (SUD). Malaysia is on its mission to be a developed country by year 2020 comprehends dealing with air pollution is one of the indicators headed towards it. At present monitoring and managing air pollution in urban areas encompasses sophisticated air quality modeling and data acquisition. However, rapid developments in major cities cause difficulties in acquiring the city geometries. The existing method in acquiring city geometries data via ground or space measurement inspection such as field survey, photogrammetry, laser scanning, remote sensing or using architectural plans appears not to be practical because of its cost and efforts. Moreover, air monitoring stations deployed are intended for regional to global scale model whereby it is not accurate for urban areas with typical resolution of less than 2 km. Furthermore in urban areas, the pollutant dispersion movements are trapped between buildings initiating it to move vertically causing visualization complications which imply the limitations of existing visualization scheme that is based on two-dimensional (2D) framework. Therefore this paper aims is to perform groundwork assessment and discuss on the current scenario in Malaysia in the aspect of current policies towards SUD, air quality monitoring stations, scale model and detail discussion on air pollution dispersion model used called the Operational Street Pollution Model (OSPM). This research proposed the implementation of three-dimensional (3D) spatial city model as a new physical data input for OSPM. The five Level of Details (LOD) of 3D spatial city model shows the scale applicability for the dispersion model implementtation. Subsequently 3D spatial city model data commonly available on the web, by having a unified data model shows the advantages in easy data acquisition, 3D visualization of air pollution dispersion and improves visual analysis of air quality monitoring in urban areas.
文摘In view of the extensive growth of China's steel production in recent years, this paper analyzed the industrial development background and economic geography theory, and discussed the possible spatial interaction mechanism. Based on panel data of China's inter-provincial steel output from 2001 to 2015, using spatial econometric model, this paper also explored whether China's provincial steel production shows material orientation, market orientation and traffic orientation, and isolated spatial interactions of interprovincial steel output. The results showed that the inter-provincial steel production in China did show both material orientation, market orientation and traffic orientation and that there was a significant negative spatial interaction, indicating that there might be strong competition and a crowing-out effect between neighboring provinces, and that the smaller the spatial scope, the more significant the spatial interactions of steel production.
文摘The intensity of environmental regulation (ERI) affects the short-term effect of the level of green mining (GML),and which structure determines the long-term mechanism.Based on the panel data from 2001 to 2015,with the dynamic panel model and system GMM estimation method were employed to test the influence of heterogeneous environmental regulation on green mining and its transmission mechanism.The results show that,there is a 'U' type nonlinear relationship between the ERI and GML.The direct effect of command-control-based (CAC) and the market incentive-based (MBI) environmental regulation on green development of mining shows the characteristics of inhibition and promotion.There is a 'U' type of indirectly moderating effect between technological innovation and the energy consumption structure on the GML.The technological innovation promotes the green development of the mining industry only after pass the inflection point of MBI,while the CAC plays a significant guiding role in upgrading of the energy consumption structure.There is an inhibition and promotion effect of MBI on the GML in the southeast coastal area,and the CAC is not significantly.Meanwhile,both of the ERI shows no positive effects in the central and western inland region.
基金supported by the Hubei Province Educational Division Social Science Research Project (Grant No. 15G051)
文摘This article considers 30 provinces of China as the cross-section subjects, and utilizes the data sample from 2009 to 2015 of these cross-sections to formulate a Spatial Panel Data Durbin Model to analyze the effect of environmental regulation on employment. The result indicates that environmental regulation has negative effect on employment with the consideration of spatial spillover effect, and this adverse effect is not significant mathematically. With the enhance of environmental regulation, the negative impact on employment will decrease accordingly, even may eventually promote job growth, which means there may be a non-linear relationship between them. Specifically, the direct effect of environmental regulation on employment indicates that it is beneficial for job growth whereas the indirect effect illustrate that it is detrimental for employment.
文摘In general, geospatial data can be divided into two formats, raster and vector formats. A raster consists of a matrix of cells where each cell contains a value representing quantitative information, such as temperature, vegetation intensity, land use/cover, elevation, etc. A vector data consists of points, lines and polygons representing location or distance or area of landscape features in graphical forms. Many raster data are derived from remote sensing techniques using sophisticated sensors by quantitative approach and many vector data are generated from GIS processes by qualitative approach. Among them, land use/cover data is frequently used in many GIS analyses and spatial modeling processes. However, proper use of quantitative and qualitative geospatial data is important in spatial modeling and decision making. In this article, we discuss common geospatial data formats, their origins and proper use in spatial modelling and decision making processes.
文摘This paper proposes some additional moment conditions for the linear feedback model with explanatory variables being predetermined, which is proposed by [1] for the purpose of dealing with count panel data. The newly proposed moment conditions include those associated with the equidispersion, the Negbin I-type model and the stationarity. The GMM estimators are constructed incorporating the additional moment conditions. Some Monte Carlo experiments indicate that the GMM estimators incorporating the additional moment conditions perform well, compared to that using only the conventional moment conditions proposed by [2,3].
文摘The Multi-source spatial data distribution is based on WebGIS, and it is an important part of multi-source geographic information management system. a new multi-source spatial data distribution model is proposed on the basis of multisource data storage model and by combining existing map distribution technology, The author developed a multi-source spatial data distribution system which based on MapGIS K9 by using this model and taking full advantage of interfacecode separating thinking and high efficiency characteristic of .net, so high-speed distribution of multi-source spatial data realized.
基金Project (40473029) supported bythe National Natural Science Foundation of China project (04JJ3046) supported bytheNatural Science Foundation of Hunan Province , China
文摘In allusion to the difficulty of integrating data with different models in integrating spatial information, the characteristics of raster structure, vector structure and mixed model were analyzed, and a hierarchical vector-raster integrative full feature model was put forward by integrating the advantage of vector and raster model and using the object-oriented method. The data structures of the four basic features, i.e. point, line, surface and solid, were described. An application was analyzed and described, and the characteristics of this model were described. In this model, all objects in the real world are divided into and described as features with hierarchy, and all the data are organized in vector. This model can describe data based on feature, field, network and other models, and avoid the disadvantage of inability to integrate data based on different models and perform spatial analysis on them in spatial information integration.
基金Supported by the Natural Science Foundation of Shanxi Province(2008011028-2)
文摘Presented a study on the design and implementation of spatial data modelingand application in the spatial data organization and management of a coalfield geologicalenvironment database.Based on analysis of a number of existing data models and takinginto account the unique data structure and characteristic, methodology and key techniquesin the object-oriented spatial data modeling were proposed for the coalfield geological environment.The model building process was developed using object-oriented technologyand the Unified Modeling Language (UML) on the platform of ESRI geodatabase datamodels.A case study of spatial data modeling in UML was presented with successful implementationin the spatial database of the coalfield geological environment.The modelbuilding and implementation provided an effective way of representing the complexity andspecificity of coalfield geological environment spatial data and an integrated managementof spatial and property data.
基金supported by the Innovation Project of Guangxi Graduate Education(YCSW2021073).
文摘The study of spatial econometrics has developed rapidly and has found wide applications in many different scientific fields,such as demography,epidemiology,regional economics,and psychology.With the deepening of research,some scholars find that there are some model specifications in spatial econometrics,such as spatial autoregressive(SAR)model and matrix exponential spatial specification(MESS),which cannot be nested within each other.Compared with the common SAR models,the MESS models have computational advantages because it eliminates the need for logarithmic determinant calculation in maximum likelihood estimation and Bayesian estimation.Meanwhile,MESS models have theoretical advantages.However,the theoretical research and application of MESS models have not been promoted vigorously.Therefore,the study of MESS model theory has practical significance.This paper studies the quasi maximum likelihood estimation for matrix exponential spatial specification(MESS)varying coefficient panel data models with fixed effects.It is shown that the estimators of model parameters and function coefficients satisfy the consistency and asymptotic normality to make a further supplement for the theoretical study of MESS model.