期刊文献+
共找到454篇文章
< 1 2 23 >
每页显示 20 50 100
Shear Let Transform Residual Learning Approach for Single-Image Super-Resolution
1
作者 Israa Ismail Ghada Eltaweel Mohamed Meselhy Eltoukhy 《Computers, Materials & Continua》 SCIE EI 2024年第5期3193-3209,共17页
Super-resolution techniques are employed to enhance image resolution by reconstructing high-resolution images from one or more low-resolution inputs.Super-resolution is of paramount importance in the context of remote... Super-resolution techniques are employed to enhance image resolution by reconstructing high-resolution images from one or more low-resolution inputs.Super-resolution is of paramount importance in the context of remote sensing,satellite,aerial,security and surveillance imaging.Super-resolution remote sensing imagery is essential for surveillance and security purposes,enabling authorities to monitor remote or sensitive areas with greater clarity.This study introduces a single-image super-resolution approach for remote sensing images,utilizing deep shearlet residual learning in the shearlet transform domain,and incorporating the Enhanced Deep Super-Resolution network(EDSR).Unlike conventional approaches that estimate residuals between high and low-resolution images,the proposed approach calculates the shearlet coefficients for the desired high-resolution image using the provided low-resolution image instead of estimating a residual image between the high-and low-resolution image.The shearlet transform is chosen for its excellent sparse approximation capabilities.Initially,remote sensing images are transformed into the shearlet domain,which divides the input image into low and high frequencies.The shearlet coefficients are fed into the EDSR network.The high-resolution image is subsequently reconstructed using the inverse shearlet transform.The incorporation of the EDSR network enhances training stability,leading to improved generated images.The experimental results from the Deep Shearlet Residual Learning approach demonstrate its superior performance in remote sensing image recovery,effectively restoring both global topology and local edge detail information,thereby enhancing image quality.Compared to other networks,our proposed approach outperforms the state-of-the-art in terms of image quality,achieving an average peak signal-to-noise ratio of 35 and a structural similarity index measure of approximately 0.9. 展开更多
关键词 super-resolution shearlet transform shearlet coefficients enhanced deep super-resolution network
下载PDF
AFBNet: A Lightweight Adaptive Feature Fusion Module for Super-Resolution Algorithms
2
作者 Lirong Yin Lei Wang +7 位作者 Siyu Lu Ruiyang Wang Haitao Ren Ahmed AlSanad Salman A.AlQahtani Zhengtong Yin Xiaolu Li Wenfeng Zheng 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第9期2315-2347,共33页
At present,super-resolution algorithms are employed to tackle the challenge of low image resolution,but it is difficult to extract differentiated feature details based on various inputs,resulting in poor generalizatio... At present,super-resolution algorithms are employed to tackle the challenge of low image resolution,but it is difficult to extract differentiated feature details based on various inputs,resulting in poor generalization ability.Given this situation,this study first analyzes the features of some feature extraction modules of the current super-resolution algorithm and then proposes an adaptive feature fusion block(AFB)for feature extraction.This module mainly comprises dynamic convolution,attention mechanism,and pixel-based gating mechanism.Combined with dynamic convolution with scale information,the network can extract more differentiated feature information.The introduction of a channel spatial attention mechanism combined with multi-feature fusion further enables the network to retain more important feature information.Dynamic convolution and pixel-based gating mechanisms enhance the module’s adaptability.Finally,a comparative experiment of a super-resolution algorithm based on the AFB module is designed to substantiate the efficiency of the AFB module.The results revealed that the network combined with the AFB module has stronger generalization ability and expression ability. 展开更多
关键词 super-resolution feature extraction dynamic convolution attention mechanism gate control
下载PDF
Multivariate Time Series Anomaly Detection Based on Spatial-Temporal Network and Transformer in Industrial Internet of Things
3
作者 Mengmeng Zhao Haipeng Peng +1 位作者 Lixiang Li Yeqing Ren 《Computers, Materials & Continua》 SCIE EI 2024年第8期2815-2837,共23页
In the Industrial Internet of Things(IIoT),sensors generate time series data to reflect the working state.When the systems are attacked,timely identification of outliers in time series is critical to ensure security.A... In the Industrial Internet of Things(IIoT),sensors generate time series data to reflect the working state.When the systems are attacked,timely identification of outliers in time series is critical to ensure security.Although many anomaly detection methods have been proposed,the temporal correlation of the time series over the same sensor and the state(spatial)correlation between different sensors are rarely considered simultaneously in these methods.Owing to the superior capability of Transformer in learning time series features.This paper proposes a time series anomaly detection method based on a spatial-temporal network and an improved Transformer.Additionally,the methods based on graph neural networks typically include a graph structure learning module and an anomaly detection module,which are interdependent.However,in the initial phase of training,since neither of the modules has reached an optimal state,their performance may influence each other.This scenario makes the end-to-end training approach hard to effectively direct the learning trajectory of each module.This interdependence between the modules,coupled with the initial instability,may cause the model to find it hard to find the optimal solution during the training process,resulting in unsatisfactory results.We introduce an adaptive graph structure learning method to obtain the optimal model parameters and graph structure.Experiments on two publicly available datasets demonstrate that the proposed method attains higher anomaly detection results than other methods. 展开更多
关键词 Multivariate time series anomaly detection spatial-temporal network TRANSFORMER
下载PDF
PSMFNet:Lightweight Partial Separation and Multiscale Fusion Network for Image Super-Resolution
4
作者 Shuai Cao Jianan Liang +2 位作者 Yongjun Cao Jinglun Huang Zhishu Yang 《Computers, Materials & Continua》 SCIE EI 2024年第10期1491-1509,共19页
The employment of deep convolutional neural networks has recently contributed to significant progress in single image super-resolution(SISR)research.However,the high computational demands of most SR techniques hinder ... The employment of deep convolutional neural networks has recently contributed to significant progress in single image super-resolution(SISR)research.However,the high computational demands of most SR techniques hinder their applicability to edge devices,despite their satisfactory reconstruction performance.These methods commonly use standard convolutions,which increase the convolutional operation cost of the model.In this paper,a lightweight Partial Separation and Multiscale Fusion Network(PSMFNet)is proposed to alleviate this problem.Specifically,this paper introduces partial convolution(PConv),which reduces the redundant convolution operations throughout the model by separating some of the features of an image while retaining features useful for image reconstruction.Additionally,it is worth noting that the existing methods have not fully utilized the rich feature information,leading to information loss,which reduces the ability to learn feature representations.Inspired by self-attention,this paper develops a multiscale feature fusion block(MFFB),which can better utilize the non-local features of an image.MFFB can learn long-range dependencies from the spatial dimension and extract features from the channel dimension,thereby obtaining more comprehensive and rich feature information.As the role of the MFFB is to capture rich global features,this paper further introduces an efficient inverted residual block(EIRB)to supplement the local feature extraction ability of PSMFNet.A comprehensive analysis of the experimental results shows that PSMFNet maintains a better performance with fewer parameters than the state-of-the-art models. 展开更多
关键词 Deep learning single image super-resolution lightweight network multiscale fusion
下载PDF
Efficient 2-D MUSIC algorithm for super-resolution moving target tracking based on an FMCW radar
5
作者 Xuchong Yi Shuangxi Zhang Yuxuan Zhou 《Geodesy and Geodynamics》 EI CSCD 2024年第5期504-515,共12页
Frequency modulated continuous wave(FMCW)radar is an advantageous sensor scheme for target estimation and environmental perception.However,existing algorithms based on discrete Fourier transform(DFT),multiple signal c... Frequency modulated continuous wave(FMCW)radar is an advantageous sensor scheme for target estimation and environmental perception.However,existing algorithms based on discrete Fourier transform(DFT),multiple signal classification(MUSIC)and compressed sensing,etc.,cannot achieve both low complexity and high resolution simultaneously.This paper proposes an efficient 2-D MUSIC algorithm for super-resolution target estimation/tracking based on FMCW radar.Firstly,we enhance the efficiency of 2-D MUSIC azimuth-range spectrum estimation by incorporating 2-D DFT and multi-level resolution searching strategy.Secondly,we apply the gradient descent method to tightly integrate the spatial continuity of object motion into spectrum estimation when processing multi-epoch radar data,which improves the efficiency of continuous target tracking.These two approaches have improved the algorithm efficiency by nearly 2-4 orders of magnitude without losing accuracy and resolution.Simulation experiments are conducted to validate the effectiveness of the algorithm in both single-epoch estimation and multi-epoch tracking scenarios. 展开更多
关键词 2D-MUSIC FMCW radar Moving target tracking super-resolution Algorithm optimization
下载PDF
Pyramid Separable Channel Attention Network for Single Image Super-Resolution
6
作者 Congcong Ma Jiaqi Mi +1 位作者 Wanlin Gao Sha Tao 《Computers, Materials & Continua》 SCIE EI 2024年第9期4687-4701,共15页
Single Image Super-Resolution(SISR)technology aims to reconstruct a clear,high-resolution image with more information from an input low-resolution image that is blurry and contains less information.This technology has... Single Image Super-Resolution(SISR)technology aims to reconstruct a clear,high-resolution image with more information from an input low-resolution image that is blurry and contains less information.This technology has significant research value and is widely used in fields such as medical imaging,satellite image processing,and security surveillance.Despite significant progress in existing research,challenges remain in reconstructing clear and complex texture details,with issues such as edge blurring and artifacts still present.The visual perception effect still needs further enhancement.Therefore,this study proposes a Pyramid Separable Channel Attention Network(PSCAN)for the SISR task.Thismethod designs a convolutional backbone network composed of Pyramid Separable Channel Attention blocks to effectively extract and fuse multi-scale features.This expands the model’s receptive field,reduces resolution loss,and enhances the model’s ability to reconstruct texture details.Additionally,an innovative artifact loss function is designed to better distinguish between artifacts and real edge details,reducing artifacts in the reconstructed images.We conducted comprehensive ablation and comparative experiments on the Arabidopsis root image dataset and several public datasets.The experimental results show that the proposed PSCAN method achieves the best-known performance in both subjective visual effects and objective evaluation metrics,with improvements of 0.84 in Peak Signal-to-Noise Ratio(PSNR)and 0.017 in Structural Similarity Index(SSIM).This demonstrates that the method can effectively preserve high-frequency texture details,reduce artifacts,and have good generalization performance. 展开更多
关键词 Deep learning single image super-resolution ARTIFACTS texture details
下载PDF
Multi-prior physics-enhanced neural network enables pixel super-resolution and twin-imagefree phase retrieval from single-shot hologram
7
作者 Xuan Tian Runze Li +5 位作者 Tong Peng Yuge Xue Junwei Min Xing Li Chen Bai Baoli Yao 《Opto-Electronic Advances》 SCIE EI CAS CSCD 2024年第9期22-38,共17页
Digital in-line holographic microscopy(DIHM)is a widely used interference technique for real-time reconstruction of living cells’morphological information with large space-bandwidth product and compact setup.However,... Digital in-line holographic microscopy(DIHM)is a widely used interference technique for real-time reconstruction of living cells’morphological information with large space-bandwidth product and compact setup.However,the need for a larger pixel size of detector to improve imaging photosensitivity,field-of-view,and signal-to-noise ratio often leads to the loss of sub-pixel information and limited pixel resolution.Additionally,the twin-image appearing in the reconstruction severely degrades the quality of the reconstructed image.The deep learning(DL)approach has emerged as a powerful tool for phase retrieval in DIHM,effectively addressing these challenges.However,most DL-based strategies are datadriven or end-to-end net approaches,suffering from excessive data dependency and limited generalization ability.Herein,a novel multi-prior physics-enhanced neural network with pixel super-resolution(MPPN-PSR)for phase retrieval of DIHM is proposed.It encapsulates the physical model prior,sparsity prior and deep image prior in an untrained deep neural network.The effectiveness and feasibility of MPPN-PSR are demonstrated by comparing it with other traditional and learning-based phase retrieval methods.With the capabilities of pixel super-resolution,twin-image elimination and high-throughput jointly from a single-shot intensity measurement,the proposed DIHM approach is expected to be widely adopted in biomedical workflow and industrial measurement. 展开更多
关键词 optical microscopy quantitative phase imaging digital holographic microscopy deep learning super-resolution
下载PDF
Comprehensive evaluation and spatial-temporal evolution characteristics of urban resilience in Chengdu-Chongqing Economic Circle
8
作者 Xin Li Shuyi Zhang +1 位作者 Rongxi Ren Yafei Wang 《Chinese Journal of Population,Resources and Environment》 2024年第1期58-67,共10页
To clarify the connotations and extensions of urban resilience,this study focuses on the Chengdu-Chongqing Economic Circle with 16 cities as research subjects.A comprehensive evaluation index system was constructed to... To clarify the connotations and extensions of urban resilience,this study focuses on the Chengdu-Chongqing Economic Circle with 16 cities as research subjects.A comprehensive evaluation index system was constructed to measure the resilience of each city from 2003 to 2020.The spatial-temporal evolution characteristics were analyzed using Kernel density estimation,standard deviation ellipse,and spatial Markov chain analysis,and the spatial Tobit model was introduced to discover the influencing factors.The results indicate the following:①Urban resilience in the Chengdu-Chongqing Economic Circle displays an upward trend,with the center of gravity moving to the southwest,and the polarization phenomenon intensifying.②The urban resilience level in a region has certain spatial and geographical dependence,while the probability of urban resilience transfer differs in adjacent cities with different resilience levels.③Urban centrality,economic scale,openness level,and financial development promote urban resilience,whereas government scale significantly inhibits it.Finally,this paper proposes countermeasures and suggestions to improve the urban resilience of the Chengdu-Chongqing Economic Circle. 展开更多
关键词 Chengdu-chongqing Economic Circle Urban resilience spatial-temporal evolution Driving factor
下载PDF
AFSTGCN:Prediction for multivariate time series using an adaptive fused spatial-temporal graph convolutional network
9
作者 Yuteng Xiao Kaijian Xia +5 位作者 Hongsheng Yin Yu-Dong Zhang Zhenjiang Qian Zhaoyang Liu Yuehan Liang Xiaodan Li 《Digital Communications and Networks》 SCIE CSCD 2024年第2期292-303,共12页
The prediction for Multivariate Time Series(MTS)explores the interrelationships among variables at historical moments,extracts their relevant characteristics,and is widely used in finance,weather,complex industries an... The prediction for Multivariate Time Series(MTS)explores the interrelationships among variables at historical moments,extracts their relevant characteristics,and is widely used in finance,weather,complex industries and other fields.Furthermore,it is important to construct a digital twin system.However,existing methods do not take full advantage of the potential properties of variables,which results in poor predicted accuracy.In this paper,we propose the Adaptive Fused Spatial-Temporal Graph Convolutional Network(AFSTGCN).First,to address the problem of the unknown spatial-temporal structure,we construct the Adaptive Fused Spatial-Temporal Graph(AFSTG)layer.Specifically,we fuse the spatial-temporal graph based on the interrelationship of spatial graphs.Simultaneously,we construct the adaptive adjacency matrix of the spatial-temporal graph using node embedding methods.Subsequently,to overcome the insufficient extraction of disordered correlation features,we construct the Adaptive Fused Spatial-Temporal Graph Convolutional(AFSTGC)module.The module forces the reordering of disordered temporal,spatial and spatial-temporal dependencies into rule-like data.AFSTGCN dynamically and synchronously acquires potential temporal,spatial and spatial-temporal correlations,thereby fully extracting rich hierarchical feature information to enhance the predicted accuracy.Experiments on different types of MTS datasets demonstrate that the model achieves state-of-the-art single-step and multi-step performance compared with eight other deep learning models. 展开更多
关键词 Adaptive adjacency matrix Digital twin Graph convolutional network Multivariate time series prediction spatial-temporal graph
下载PDF
Faster split-based feedback network for image super-resolution
10
作者 田澍 ZHOU Hongyang 《High Technology Letters》 EI CAS 2024年第2期117-127,共11页
Although most of the existing image super-resolution(SR)methods have achieved superior performance,contrastive learning for high-level tasks has not been fully utilized in the existing image SR methods based on deep l... Although most of the existing image super-resolution(SR)methods have achieved superior performance,contrastive learning for high-level tasks has not been fully utilized in the existing image SR methods based on deep learning.This work focuses on two well-known strategies developed for lightweight and robust SR,i.e.,contrastive learning and feedback mechanism,and proposes an integrated solution called a split-based feedback network(SPFBN).The proposed SPFBN is based on a feedback mechanism to learn abstract representations and uses contrastive learning to explore high information in the representation space.Specifically,this work first uses hidden states and constraints in recurrent neural network(RNN)to implement a feedback mechanism.Then,use contrastive learning to perform representation learning to obtain high-level information by pushing the final image to the intermediate images and pulling the final SR image to the high-resolution image.Besides,a split-based feedback block(SPFB)is proposed to reduce model redundancy,which tolerates features with similar patterns but requires fewer parameters.Extensive experimental results demonstrate the superiority of the proposed method in comparison with the state-of-the-art methods.Moreover,this work extends the experiment to prove the effectiveness of this method and shows better overall reconstruction quality. 展开更多
关键词 super-resolution(SR) split-based feedback contrastive learning
下载PDF
Spatial-temporal distribution and geochemistry of highly evolved Mesozoic granites in Great Xing’an Range,NE China:Discriminant criteria and geological significance
11
作者 WU Haoran YANG Hao +4 位作者 GE Wenchun JI Zheng DONG Yu JING Yan JING Jiahao 《Global Geology》 2024年第1期20-34,共15页
Highly evolved granite is an important sign of the mature continent crust and closely associated with deposits of rare metals.In this work,the authors undertake systematically zircon U-Pb ages and whole rock elemental... Highly evolved granite is an important sign of the mature continent crust and closely associated with deposits of rare metals.In this work,the authors undertake systematically zircon U-Pb ages and whole rock elemental data for highly evolved granitic intrusions from the Great Xing’an Range(GXR),NE China,to elucidate their discriminant criteria,spatial-temporal distribution,differentiation and geodynamic mecha-nism.Geochemical data of these highly evolved granites suggest that high w(SiO_(2))(>70%)and differentiation index(DI>88)could be quantified indicators,while strong Eu depletion,high TE_(1,3),lowΣREE and low Zr/Hf,Nb/Ta,K/Rb could only be qualitative indicators.Zircon U-Pb ages suggest that the highly evolved gran-ites in the GXR were mainly formed in Late Mesozoic,which can be divided into two major stages:Late Ju-rassic-early Early Cretaceous(162-136 Ma,peak at 138 Ma),and late Early Cretaceous(136-106 Ma,peak at 126 Ma).The highly evolved granites are mainly distributed in the central-southern GXR,and display a weakly trend of getting younger from northwest to southeast,meanwhile indicating the metallogenic potential of rare metals within the central GXR.The spatial-temporal distribution,combined with regional geological data,indicates the highly evolved Mesozoic granites in the GXR were emplaced in an extensional environ-ment,of which the Late Jurassic-early Early Cretaceous extension was related to the closure of the Mongol-Okhotsk Ocean and roll-back of the Paleo-Pacific Plate,while the late Early Cretaceous extension was mainly related to the roll-back of the Paleo-Pacific Plate. 展开更多
关键词 highly evolved granite Great Xing’an Range spatial-temporal distribution extensional environment
下载PDF
Adaptive spatial-temporal graph attention network for traffic speed prediction
12
作者 ZHANG Xijun ZHANG Baoqi +2 位作者 ZHANG Hong NIE Shengyuan ZHANG Xianli 《High Technology Letters》 EI CAS 2024年第3期221-230,共10页
Considering the nonlinear structure and spatial-temporal correlation of traffic network,and the influence of potential correlation between nodes of traffic network on the spatial features,this paper proposes a traffic... Considering the nonlinear structure and spatial-temporal correlation of traffic network,and the influence of potential correlation between nodes of traffic network on the spatial features,this paper proposes a traffic speed prediction model based on the combination of graph attention network with self-adaptive adjacency matrix(SAdpGAT)and bidirectional gated recurrent unit(BiGRU).First-ly,the model introduces graph attention network(GAT)to extract the spatial features of real road network and potential road network respectively in spatial dimension.Secondly,the spatial features are input into BiGRU to extract the time series features.Finally,the prediction results of the real road network and the potential road network are connected to generate the final prediction results of the model.The experimental results show that the prediction accuracy of the proposed model is im-proved obviously on METR-LA and PEMS-BAY datasets,which proves the advantages of the pro-posed spatial-temporal model in traffic speed prediction. 展开更多
关键词 traffic speed prediction spatial-temporal correlation self-adaptive adjacency ma-trix graph attention network(GAT) bidirectional gated recurrent unit(BiGRU)
下载PDF
Spatial-temporal Variation Characteristics of Water Quality in the Lower Reaches of the Nenjiang River
13
作者 Xiangzhe MENG Jing WANG +4 位作者 Yinglin XIE Fei PENG Chunsheng WEI Xin TIAN Lunwen WANG 《Meteorological and Environmental Research》 2024年第1期67-71,共5页
As an important river in the western part of Jilin Province,the lower reach of the Nenjiang River is an important wetland water source conservation area in Jilin Province.Within the watershed,it governs the Momoge Wet... As an important river in the western part of Jilin Province,the lower reach of the Nenjiang River is an important wetland water source conservation area in Jilin Province.Within the watershed,it governs the Momoge Wetland,the Xianghai Wetland,and the Danjiang Wetland in Jilin Province.The main problem in the lower reaches of the Nenjiang River is the uneven distribution of water resources in time and space,and the intensification of land salinization.Zhenlai County and Da an City in the Nenjiang River Basin have sufficient surface water resources,with surface water as the drinking water source.Baicheng City and Tongyu County have scarce surface water resources,and both use groundwater as their domestic water source.The main polluted section in the basin is the Xianghai Reservoir,and the annual water quality evaluation is Class V.However,the water quality of the Tao er River,the main stream of the Nenjiang River,is significantly better than that of the Xianghai Reservoir.In order to better study the water environmental pollution situation in the Nenjiang River basin,monitoring data from five sections of non seasonal rivers in the basin from 2012 to 2021 were selected for studying water quality.This in-depth exploration of the water pollution status and river water quality change trends in the Nenjiang River basin is of great significance for future rural development,agricultural pattern transformation,and the promotion of water ecological civilization construction. 展开更多
关键词 Lower reaches of the Nenjiang River Water quality spatial-temporal variation
下载PDF
Hyperspectral Image Super-Resolution Meets Deep Learning:A Survey and Perspective 被引量:3
14
作者 Xinya Wang Qian Hu +1 位作者 Yingsong Cheng Jiayi Ma 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2023年第8期1668-1691,共24页
Hyperspectral image super-resolution,which refers to reconstructing the high-resolution hyperspectral image from the input low-resolution observation,aims to improve the spatial resolution of the hyperspectral image,w... Hyperspectral image super-resolution,which refers to reconstructing the high-resolution hyperspectral image from the input low-resolution observation,aims to improve the spatial resolution of the hyperspectral image,which is beneficial for subsequent applications.The development of deep learning has promoted significant progress in hyperspectral image super-resolution,and the powerful expression capabilities of deep neural networks make the predicted results more reliable.Recently,several latest deep learning technologies have made the hyperspectral image super-resolution method explode.However,a comprehensive review and analysis of the latest deep learning methods from the hyperspectral image super-resolution perspective is absent.To this end,in this survey,we first introduce the concept of hyperspectral image super-resolution and classify the methods from the perspectives with or without auxiliary information.Then,we review the learning-based methods in three categories,including single hyperspectral image super-resolution,panchromatic-based hyperspectral image super-resolution,and multispectral-based hyperspectral image super-resolution.Subsequently,we summarize the commonly used hyperspectral dataset,and the evaluations for some representative methods in three categories are performed qualitatively and quantitatively.Moreover,we briefly introduce several typical applications of hyperspectral image super-resolution,including ground object classification,urban change detection,and ecosystem monitoring.Finally,we provide the conclusion and challenges in existing learning-based methods,looking forward to potential future research directions. 展开更多
关键词 Deep learning hyperspectral image image fusion image super-resolution SURVEY
下载PDF
Contrastive Learning for Blind Super-Resolution via A Distortion-Specific Network 被引量:1
15
作者 Xinya Wang Jiayi Ma Junjun Jiang 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2023年第1期78-89,共12页
Previous deep learning-based super-resolution(SR)methods rely on the assumption that the degradation process is predefined(e.g.,bicubic downsampling).Thus,their performance would suffer from deterioration if the real ... Previous deep learning-based super-resolution(SR)methods rely on the assumption that the degradation process is predefined(e.g.,bicubic downsampling).Thus,their performance would suffer from deterioration if the real degradation is not consistent with the assumption.To deal with real-world scenarios,existing blind SR methods are committed to estimating both the degradation and the super-resolved image with an extra loss or iterative scheme.However,degradation estimation that requires more computation would result in limited SR performance due to the accumulated estimation errors.In this paper,we propose a contrastive regularization built upon contrastive learning to exploit both the information of blurry images and clear images as negative and positive samples,respectively.Contrastive regularization ensures that the restored image is pulled closer to the clear image and pushed far away from the blurry image in the representation space.Furthermore,instead of estimating the degradation,we extract global statistical prior information to capture the character of the distortion.Considering the coupling between the degradation and the low-resolution image,we embed the global prior into the distortion-specific SR network to make our method adaptive to the changes of distortions.We term our distortion-specific network with contrastive regularization as CRDNet.The extensive experiments on synthetic and realworld scenes demonstrate that our lightweight CRDNet surpasses state-of-the-art blind super-resolution approaches. 展开更多
关键词 Blind super-resolution contrastive learning deep learning image super-resolution(SR)
下载PDF
Improved spatiotemporal resolution of anti-scattering super-resolution label-free microscopy via synthetic wave 3D metalens imaging 被引量:4
16
作者 Yuting Xiao Lianwei Chen +5 位作者 Mingbo Pu Mingfeng Xu Qi Zhang Yinghui Guo Tianqu Chen Xiangang Luo 《Opto-Electronic Science》 2023年第11期4-13,共10页
Super-resolution(SR)microscopy has dramatically enhanced our understanding of biological processes.However,scattering media in thick specimens severely limits the spatial resolution,often rendering the images unclear ... Super-resolution(SR)microscopy has dramatically enhanced our understanding of biological processes.However,scattering media in thick specimens severely limits the spatial resolution,often rendering the images unclear or indistinguishable.Additionally,live-cell imaging faces challenges in achieving high temporal resolution for fast-moving subcellular structures.Here,we present the principles of a synthetic wave microscopy(SWM)to extract three-dimensional information from thick unlabeled specimens,where photobleaching and phototoxicity are avoided.SWM exploits multiple-wave interferometry to reveal the specimen’s phase information in the area of interest,which is not affected by the scattering media in the optical path.SWM achieves~0.42λ/NA resolution at an imaging speed of up to 106 pixels/s.SWM proves better temporal resolution and sensitivity than the most conventional microscopes currently available while maintaining exceptional SR and anti-scattering capabilities.Penetrating through the scattering media is challenging for conventional imaging techniques.Remarkably,SWM retains its efficacy even in conditions of low signal-to-noise ratios.It facilitates the visualization of dynamic subcellular structures in live cells,encompassing tubular endoplasmic reticulum(ER),lipid droplets,mitochondria,and lysosomes. 展开更多
关键词 super-resolution anti-scattering unlabeled high temporal resolution
下载PDF
Spatial-temporal difference between nitrate in groundwater and nitrogen in soil based on geostatistical analysis 被引量:2
17
作者 Xiu-bo Sun Chang-lai Guo +3 位作者 Jing Zhang Jia-quan Sun Jian Cui Mao-hua Liu 《Journal of Groundwater Science and Engineering》 2023年第1期37-46,共10页
The study of temporal and spatial variations of nitrate in groundwater under different soil nitrogen environments is helpful to the security of groundwater resources in agricultural areas.In this paper,based on 320 gr... The study of temporal and spatial variations of nitrate in groundwater under different soil nitrogen environments is helpful to the security of groundwater resources in agricultural areas.In this paper,based on 320 groups of soil and groundwater samples collected at the same time,geostatistical analysis and multiple regression analysis were comprehensively used to conduct the evaluation of nitrogen contents in both groundwater and soil.From May to August,as the nitrification of groundwater is dominant,the average concentration of nitrate nitrogen is 34.80 mg/L;The variation of soil ammonia nitrogen and nitrate nitrogen is moderate from May to July,and the variation coefficient decreased sharply and then increased in August.There is a high correlation between the nitrate nitrogen in groundwater and soil in July,and there is a high correlation between the nitrate nitrogen in groundwater and ammonium nitrogen in soil in August and nitrate nitrogen in soil in July.From May to August,the area of low groundwater nitrate nitrogen in 0-5 mg/L and 5-10 mg/L decreased from 10.97%to 0,and the proportion of high-value area(greater than 70 mg/L)increased from 21.19%to 27.29%.Nitrate nitrogen is the main factor affecting the quality of groundwater.The correlation analysis of nitrate nitrogen in groundwater,nitrate nitrogen in soil and ammonium nitrogen shows that they have a certain period of delay.The areas with high concentration of nitrate in groundwater are mainly concentrated in the western part of the study area,which has a high consistency with the high value areas of soil nitrate distribution from July to August,and a high difference with the spatial position of soil ammonia nitrogen distribution in August. 展开更多
关键词 GROUNDWATER NITRATE SOIL spatial-temporal variation Geostatistical analysis
下载PDF
STGSA:A Novel Spatial-Temporal Graph Synchronous Aggregation Model for Traffic Prediction 被引量:2
18
作者 Zebing Wei Hongxia Zhao +5 位作者 Zhishuai Li Xiaojie Bu Yuanyuan Chen Xiqiao Zhang Yisheng Lv Fei-Yue Wang 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2023年第1期226-238,共13页
The success of intelligent transportation systems relies heavily on accurate traffic prediction,in which how to model the underlying spatial-temporal information from traffic data has come under the spotlight.Most exi... The success of intelligent transportation systems relies heavily on accurate traffic prediction,in which how to model the underlying spatial-temporal information from traffic data has come under the spotlight.Most existing frameworks typically utilize separate modules for spatial and temporal correlations modeling.However,this stepwise pattern may limit the effectiveness and efficiency in spatial-temporal feature extraction and cause the overlook of important information in some steps.Furthermore,it is lacking sufficient guidance from prior information while modeling based on a given spatial adjacency graph(e.g.,deriving from the geodesic distance or approximate connectivity),and may not reflect the actual interaction between nodes.To overcome those limitations,our paper proposes a spatial-temporal graph synchronous aggregation(STGSA)model to extract the localized and long-term spatial-temporal dependencies simultaneously.Specifically,a tailored graph aggregation method in the vertex domain is designed to extract spatial and temporal features in one graph convolution process.In each STGSA block,we devise a directed temporal correlation graph to represent the localized and long-term dependencies between nodes,and the potential temporal dependence is further fine-tuned by an adaptive weighting operation.Meanwhile,we construct an elaborated spatial adjacency matrix to represent the road sensor graph by considering both physical distance and node similarity in a datadriven manner.Then,inspired by the multi-head attention mechanism which can jointly emphasize information from different r epresentation subspaces,we construct a multi-stream module based on the STGSA blocks to capture global information.It projects the embedding input repeatedly with multiple different channels.Finally,the predicted values are generated by stacking several multi-stream modules.Extensive experiments are constructed on six real-world datasets,and numerical results show that the proposed STGSA model significantly outperforms the benchmarks. 展开更多
关键词 Deep learning graph neural network(GNN) multistream spatial-temporal feature extraction temporal graph traffic prediction
下载PDF
Residual Feature Attentional Fusion Network for Lightweight Chest CT Image Super-Resolution 被引量:1
19
作者 Kun Yang Lei Zhao +4 位作者 Xianghui Wang Mingyang Zhang Linyan Xue Shuang Liu Kun Liu 《Computers, Materials & Continua》 SCIE EI 2023年第6期5159-5176,共18页
The diagnosis of COVID-19 requires chest computed tomography(CT).High-resolution CT images can provide more diagnostic information to help doctors better diagnose the disease,so it is of clinical importance to study s... The diagnosis of COVID-19 requires chest computed tomography(CT).High-resolution CT images can provide more diagnostic information to help doctors better diagnose the disease,so it is of clinical importance to study super-resolution(SR)algorithms applied to CT images to improve the reso-lution of CT images.However,most of the existing SR algorithms are studied based on natural images,which are not suitable for medical images;and most of these algorithms improve the reconstruction quality by increasing the network depth,which is not suitable for machines with limited resources.To alleviate these issues,we propose a residual feature attentional fusion network for lightweight chest CT image super-resolution(RFAFN).Specifically,we design a contextual feature extraction block(CFEB)that can extract CT image features more efficiently and accurately than ordinary residual blocks.In addition,we propose a feature-weighted cascading strategy(FWCS)based on attentional feature fusion blocks(AFFB)to utilize the high-frequency detail information extracted by CFEB as much as possible via selectively fusing adjacent level feature information.Finally,we suggest a global hierarchical feature fusion strategy(GHFFS),which can utilize the hierarchical features more effectively than dense concatenation by progressively aggregating the feature information at various levels.Numerous experiments show that our method performs better than most of the state-of-the-art(SOTA)methods on the COVID-19 chest CT dataset.In detail,the peak signal-to-noise ratio(PSNR)is 0.11 dB and 0.47 dB higher on CTtest1 and CTtest2 at×3 SR compared to the suboptimal method,but the number of parameters and multi-adds are reduced by 22K and 0.43G,respectively.Our method can better recover chest CT image quality with fewer computational resources and effectively assist in COVID-19. 展开更多
关键词 super-resolution COVID-19 chest CT lightweight network contextual feature extraction attentional feature fusion
下载PDF
A Hybrid Regularization-Based Multi-Frame Super-Resolution Using Bayesian Framework 被引量:1
20
作者 Mahmoud M.Khattab Akram M.Zeki +3 位作者 Ali A.Alwan Belgacem Bouallegue Safaa S.Matter Abdelmoty M.Ahmed 《Computer Systems Science & Engineering》 SCIE EI 2023年第1期35-54,共20页
The prime purpose for the image reconstruction of a multi-frame super-resolution is to reconstruct a higher-resolution image through incorporating the knowledge obtained from a series of relevant low-resolution images... The prime purpose for the image reconstruction of a multi-frame super-resolution is to reconstruct a higher-resolution image through incorporating the knowledge obtained from a series of relevant low-resolution images,which is useful in numerousfields.Nevertheless,super-resolution image reconstruction methods are usually damaged by undesirable restorative artifacts,which include blurring distortion,noises,and stair-casing effects.Consequently,it is always challenging to achieve balancing between image smoothness and preservation of the edges inside the image.In this research work,we seek to increase the effectiveness of multi-frame super-resolution image reconstruction by increasing the visual information and improving the automated machine perception,which improves human analysis and interpretation processes.Accordingly,we propose a new approach to the image reconstruction of multi-frame super-resolution,so that it is created through the use of the regularization framework.In the proposed approach,the bilateral edge preserving and bilateral total variation regularizations are employed to approximate a high-resolution image generated from a sequence of corresponding images with low-resolution to protect significant features of an image,including sharp image edges and texture details while preventing artifacts.The experimental results of the synthesized image demonstrate that the new proposed approach has improved efficacy both visually and numerically more than other approaches. 展开更多
关键词 super-resolution regularized framework bilateral total variation bilateral edge preserving
下载PDF
上一页 1 2 23 下一页 到第
使用帮助 返回顶部