The hollow hexagonal pattern involved in surface discharges is firstly investigated in a?dielectric barrier discharge system. The spatiotemporal structures of the pattern are studied using an intensified charge-coupl...The hollow hexagonal pattern involved in surface discharges is firstly investigated in a?dielectric barrier discharge system. The spatiotemporal structures of the pattern are studied using an intensified charge-coupled device and photomultiplier. Instantaneous images taken by an intensified charge-coupled device and optical correlation measurements show that the surface discharges are induced by volume discharges. The optical signals indicate that the discharge filaments constituting the hexagonal frame discharge randomly at the first current pulse or the second pulse, once?or twice. There is no?interleaving of several sub-lattices, which indicates that the ‘memory' effect is no longer in force due to surface discharges. By using the emission spectrum method, both the molecule vibration temperature?and electron density of the surface discharges are larger than that of the volume discharges.展开更多
基金supported by National Natural Science Foundation of China(Nos.11375051 and 11505044)Key Basic Research Project in the application basic research plan of Hebei Province(No.15961105D)the Research Foundation of Education Bureau of Hebei Province,China(No.LJRC011)
文摘The hollow hexagonal pattern involved in surface discharges is firstly investigated in a?dielectric barrier discharge system. The spatiotemporal structures of the pattern are studied using an intensified charge-coupled device and photomultiplier. Instantaneous images taken by an intensified charge-coupled device and optical correlation measurements show that the surface discharges are induced by volume discharges. The optical signals indicate that the discharge filaments constituting the hexagonal frame discharge randomly at the first current pulse or the second pulse, once?or twice. There is no?interleaving of several sub-lattices, which indicates that the ‘memory' effect is no longer in force due to surface discharges. By using the emission spectrum method, both the molecule vibration temperature?and electron density of the surface discharges are larger than that of the volume discharges.