Objective:To explore the role of specialized group management in the quality control of perioperative nursing.Methods:45 surgical nurses from our hospital were selected as the research subjects.Traditional operating r...Objective:To explore the role of specialized group management in the quality control of perioperative nursing.Methods:45 surgical nurses from our hospital were selected as the research subjects.Traditional operating room management was adopted from July 2019 to June 2020,and specialized group management was adopted from July 2020 to June 2021.The surgeon’s satisfaction,surgical nurses’core professional competence,and surgical patients’satisfaction were obtained through surveys and the results were analyzed.Results:Surgeon satisfaction before the implementation of specialized group management was significantly lower than after its implementation(P<0.05).Besides,surgical nurses’core professional competency scores before the implementation of specialized group management were significantly lower than after its implementation(P<0.05).Lastly,surgical patients’satisfaction before the implementation of specialized group management was significantly lower than after its implementation(P<0.05).Conclusion:Specialized group management helps to improve the quality of perioperative care and should be applied in clinical practice.展开更多
For any group G, denote byπe(G) the set of orders of elements in G. Given a finite group G, let h(πe (G)) be the number of isomorphism classes of finite groups with the same set πe(G) of element orders. A group G i...For any group G, denote byπe(G) the set of orders of elements in G. Given a finite group G, let h(πe (G)) be the number of isomorphism classes of finite groups with the same set πe(G) of element orders. A group G is called k-recognizable if h(πe(G)) = k <∞, otherwise G is called non-recognizable. Also a 1-recognizable group is called a recognizable (or characterizable) group. In this paper the authors show that the simple groups PSL(3,q), where 3 < q≡±2 (mod 5) and (6, (q-1)/2) = 1, are recognizable.展开更多
Structures of two classes of solvable subgroups in SL(3, C) are given in this paper, and the integrability of the 3-order Fuchsian equation which is integrable in the sense that its monodromy group is solvable is di...Structures of two classes of solvable subgroups in SL(3, C) are given in this paper, and the integrability of the 3-order Fuchsian equation which is integrable in the sense that its monodromy group is solvable is discussed.展开更多
We study the structure of Bernstein's first summable operators and show that they con- verge uniformly to continuons functions on the special real orthogonal group SO(n)in this paper.In addition,we have also discu...We study the structure of Bernstein's first summable operators and show that they con- verge uniformly to continuons functions on the special real orthogonal group SO(n)in this paper.In addition,we have also discussed the approximation degree to a class of function Lipα(0<α≤1)on SO(n).展开更多
In the present paper, a construction of Cartesian authentication codes by using the BN pair decomposition of special linear group is presented. Moreover, under the case that the encoding rules are chosen according to ...In the present paper, a construction of Cartesian authentication codes by using the BN pair decomposition of special linear group is presented. Moreover, under the case that the encoding rules are chosen according to a uniform probability distribution, the probability of a successful impersonation attack and the probability of a successful substitution attack of the code are computed.展开更多
Entanglement in quantum theory is a peculiar concept to scientists. With this concept we are forced to re-consider the cluster property which means that one event is irrelevant to another event when they are fully far...Entanglement in quantum theory is a peculiar concept to scientists. With this concept we are forced to re-consider the cluster property which means that one event is irrelevant to another event when they are fully far away. In the recent works we showed that the quasi-degenerate states induce the violation of cluster property in antiferromagnets when the continuous symmetry breaks spontaneously. We expect that the violation of cluster property will be observed in other materials too, because the spontaneous symmetry breaking is found in many systems such as the high temperature superconductors and the superfluidity. In order to examine the cluster property for these materials, we studied a quantum nonlinear sigma model with U(1) symmetry in the previous work. There we showed that the model does have quasi-degenerate states. In this paper we study the quantum nonlinear sigma model with SU(2) symmetry. In our approach we first define the quantum system on the lattice and then adopt the representation where the kinetic term is diagonalized. Since we have no definition on the conjugate variable to the angle variable, we use the angular momentum operators instead for the kinetic term. In this representation we introduce the states with the fixed quantum numbers and carry out numerical calculations using quantum Monte Carlo methods and other methods. Through analytical and numerical studies, we conclude that the energy of the quasi-degenerate state is proportional to the squared total angular momentum as well as to the inverse of the lattice size.展开更多
Let P be a finite group and denote by w(P) the set of its element orders. P is called k-recognizable by the set of its element orders if for any finte group G with ω(G) =ω(P) there are, up to isomorphism, k fi...Let P be a finite group and denote by w(P) the set of its element orders. P is called k-recognizable by the set of its element orders if for any finte group G with ω(G) =ω(P) there are, up to isomorphism, k finite groups G such that G ≌P. In this paper we will prove that the group Lp(3), where p 〉 3 is a prime number, is at most 2-recognizable.展开更多
Unlike the traditional independent component analysis(ICA)algorithms and some recently emerging linear ICA algorithms that search for solutions in the space of general matrices or orthogonal matrices,in this paper we ...Unlike the traditional independent component analysis(ICA)algorithms and some recently emerging linear ICA algorithms that search for solutions in the space of general matrices or orthogonal matrices,in this paper we propose two new methods which only search for solutions in the space of the matrices with unitary determinant and without whitening.The new algorithms are based on the special linear group SL(n).In order to achieve our target,we first provide a representation theory for any matrix in SL(n),which only simply uses the product of multiple exponentials of traceless matrices.Based on the matrix representation theory,two novel ICA algorithms are developed along with simple analysis on their equilibrium points.Moreover,we apply our methods to the classical problem of signal separation.The experimental results indicate that the superior convergence of our proposed algorithms,which can be expected as two viable alternatives to the ICA algorithms available in publications.展开更多
We prove a converse theorem for split even special orthogonal groups over finite fields.This is the only case left on converse theorems of classical groups and the difficulty is the existence of the outer automorphism...We prove a converse theorem for split even special orthogonal groups over finite fields.This is the only case left on converse theorems of classical groups and the difficulty is the existence of the outer automorphism. In this paper, we develop new ideas and overcome this difficulty.展开更多
We determine the sizes of orbits from the action of subgroups of PSL(2,q) on projective line X = GF(q) ∪ {∞} with q a prime power and congruent to 1 modulo 4.As an example of its application,we construct some new fa...We determine the sizes of orbits from the action of subgroups of PSL(2,q) on projective line X = GF(q) ∪ {∞} with q a prime power and congruent to 1 modulo 4.As an example of its application,we construct some new families of simple 3-designs admitting PSL(2,q) as automorphism group.展开更多
The blockwise Alperin weight conjecture assets that for any finite group G and any prime l, the number of the Brauer characters in an l-block B equals the number of the G-conjugacy classes of l-weights belonging to B....The blockwise Alperin weight conjecture assets that for any finite group G and any prime l, the number of the Brauer characters in an l-block B equals the number of the G-conjugacy classes of l-weights belonging to B. Recently, the inductive blockwise Alperin weight condition has been introduced such that the blockwise Alperin weight conjecture holds if all non-abelian simple groups satisfy these conditions. We will verify the inductive blockwise Alperin weight condition for the finite simple groups PSL(3, q) in this paper.展开更多
A boundedness criterion is set up for some convolution operators on a compact Lie group.By this criterion a Hormander multiplier theorem is proved in the Hardy spaces on SU(2).
基金Hebei University Affiliated Hospital Youth Fund Scientific Research Project Project Number:2019Q017。
文摘Objective:To explore the role of specialized group management in the quality control of perioperative nursing.Methods:45 surgical nurses from our hospital were selected as the research subjects.Traditional operating room management was adopted from July 2019 to June 2020,and specialized group management was adopted from July 2020 to June 2021.The surgeon’s satisfaction,surgical nurses’core professional competence,and surgical patients’satisfaction were obtained through surveys and the results were analyzed.Results:Surgeon satisfaction before the implementation of specialized group management was significantly lower than after its implementation(P<0.05).Besides,surgical nurses’core professional competency scores before the implementation of specialized group management were significantly lower than after its implementation(P<0.05).Lastly,surgical patients’satisfaction before the implementation of specialized group management was significantly lower than after its implementation(P<0.05).Conclusion:Specialized group management helps to improve the quality of perioperative care and should be applied in clinical practice.
基金This work has been supported by the Research Institute for Fundamental Sciences Tabriz,Iran.
文摘For any group G, denote byπe(G) the set of orders of elements in G. Given a finite group G, let h(πe (G)) be the number of isomorphism classes of finite groups with the same set πe(G) of element orders. A group G is called k-recognizable if h(πe(G)) = k <∞, otherwise G is called non-recognizable. Also a 1-recognizable group is called a recognizable (or characterizable) group. In this paper the authors show that the simple groups PSL(3,q), where 3 < q≡±2 (mod 5) and (6, (q-1)/2) = 1, are recognizable.
文摘Structures of two classes of solvable subgroups in SL(3, C) are given in this paper, and the integrability of the 3-order Fuchsian equation which is integrable in the sense that its monodromy group is solvable is discussed.
文摘We study the structure of Bernstein's first summable operators and show that they con- verge uniformly to continuons functions on the special real orthogonal group SO(n)in this paper.In addition,we have also discussed the approximation degree to a class of function Lipα(0<α≤1)on SO(n).
文摘In the present paper, a construction of Cartesian authentication codes by using the BN pair decomposition of special linear group is presented. Moreover, under the case that the encoding rules are chosen according to a uniform probability distribution, the probability of a successful impersonation attack and the probability of a successful substitution attack of the code are computed.
文摘Entanglement in quantum theory is a peculiar concept to scientists. With this concept we are forced to re-consider the cluster property which means that one event is irrelevant to another event when they are fully far away. In the recent works we showed that the quasi-degenerate states induce the violation of cluster property in antiferromagnets when the continuous symmetry breaks spontaneously. We expect that the violation of cluster property will be observed in other materials too, because the spontaneous symmetry breaking is found in many systems such as the high temperature superconductors and the superfluidity. In order to examine the cluster property for these materials, we studied a quantum nonlinear sigma model with U(1) symmetry in the previous work. There we showed that the model does have quasi-degenerate states. In this paper we study the quantum nonlinear sigma model with SU(2) symmetry. In our approach we first define the quantum system on the lattice and then adopt the representation where the kinetic term is diagonalized. Since we have no definition on the conjugate variable to the angle variable, we use the angular momentum operators instead for the kinetic term. In this representation we introduce the states with the fixed quantum numbers and carry out numerical calculations using quantum Monte Carlo methods and other methods. Through analytical and numerical studies, we conclude that the energy of the quasi-degenerate state is proportional to the squared total angular momentum as well as to the inverse of the lattice size.
基金Supported by the research council of College of Science, the University of Tehran (Grant No. 6103014-1-03)
文摘Let P be a finite group and denote by w(P) the set of its element orders. P is called k-recognizable by the set of its element orders if for any finte group G with ω(G) =ω(P) there are, up to isomorphism, k finite groups G such that G ≌P. In this paper we will prove that the group Lp(3), where p 〉 3 is a prime number, is at most 2-recognizable.
文摘Unlike the traditional independent component analysis(ICA)algorithms and some recently emerging linear ICA algorithms that search for solutions in the space of general matrices or orthogonal matrices,in this paper we propose two new methods which only search for solutions in the space of the matrices with unitary determinant and without whitening.The new algorithms are based on the special linear group SL(n).In order to achieve our target,we first provide a representation theory for any matrix in SL(n),which only simply uses the product of multiple exponentials of traceless matrices.Based on the matrix representation theory,two novel ICA algorithms are developed along with simple analysis on their equilibrium points.Moreover,we apply our methods to the classical problem of signal separation.The experimental results indicate that the superior convergence of our proposed algorithms,which can be expected as two viable alternatives to the ICA algorithms available in publications.
基金partially supported by the NSF Grants DMS-1848058partially supported by the NSF Grants DMS-1702218, DMS-1848058start-up funds from the Department of Mathematics at Purdue University.
文摘We prove a converse theorem for split even special orthogonal groups over finite fields.This is the only case left on converse theorems of classical groups and the difficulty is the existence of the outer automorphism. In this paper, we develop new ideas and overcome this difficulty.
基金supported by National Natural Science Foundation of China (Grant Nos.10871205 and 10971252)the Research Foundation of Education Bureau of Hunan Province of China (Grant No. 08c021)
文摘We determine the sizes of orbits from the action of subgroups of PSL(2,q) on projective line X = GF(q) ∪ {∞} with q a prime power and congruent to 1 modulo 4.As an example of its application,we construct some new families of simple 3-designs admitting PSL(2,q) as automorphism group.
文摘The blockwise Alperin weight conjecture assets that for any finite group G and any prime l, the number of the Brauer characters in an l-block B equals the number of the G-conjugacy classes of l-weights belonging to B. Recently, the inductive blockwise Alperin weight condition has been introduced such that the blockwise Alperin weight conjecture holds if all non-abelian simple groups satisfy these conditions. We will verify the inductive blockwise Alperin weight condition for the finite simple groups PSL(3, q) in this paper.
文摘A boundedness criterion is set up for some convolution operators on a compact Lie group.By this criterion a Hormander multiplier theorem is proved in the Hardy spaces on SU(2).