期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
零均值独立噪声背景下的二维谐波估计方法 被引量:1
1
作者 刘西成 张政伟 +1 位作者 邱红兵 孙晓玲 《计算机仿真》 CSCD 北大核心 2011年第2期154-156,392,共4页
关于信号频谱特性研究,为了提高有用信号的平稳性和精确的结果,通过定义一种特殊的四阶矩谱,提出了一种新的二维谐波频率估计方法,方法对噪声的分布和颜色无需作任何限制,而且表现出更好的计算有效性。作为一个副产品,还可以直接从频谱... 关于信号频谱特性研究,为了提高有用信号的平稳性和精确的结果,通过定义一种特殊的四阶矩谱,提出了一种新的二维谐波频率估计方法,方法对噪声的分布和颜色无需作任何限制,而且表现出更好的计算有效性。作为一个副产品,还可以直接从频谱中估计出噪声的方差。进行仿真,结果表明能得到平稳和精确的结果,证明方法对零均值独立乘性与加性噪声背景下的二维谐波估计问题是非常有效的。 展开更多
关键词 谐波估计 乘性与加性噪声 循环统计 特殊四阶矩谱
下载PDF
任意均值复杂噪声下三次非线性耦合谐波分析 被引量:2
2
作者 曾黎 樊养余 张政伟 《计算机仿真》 CSCD 2007年第9期325-328,共4页
针对零均值乘性噪声和加性噪声共存,并且乘性噪声之间独立、乘性噪声和加性噪声之间也独立的噪声背景下谐波的三次非线性耦合问题,提出了一种特殊定义的四阶时间平均多矩谱方法。此方法能够有效地估计出观测信号中参与耦合的谐波频率,... 针对零均值乘性噪声和加性噪声共存,并且乘性噪声之间独立、乘性噪声和加性噪声之间也独立的噪声背景下谐波的三次非线性耦合问题,提出了一种特殊定义的四阶时间平均多矩谱方法。此方法能够有效地估计出观测信号中参与耦合的谐波频率,文中给出了详细的理论分析和证明。由于该方法也同样适合于非零均值噪声下的谐波耦合问题,因此不再需要对噪声的均值、颜色和分布作任何限制,从而对噪声的统计特性及分布的限制降到了最低,仿真结果表明了该方法的有效性。 展开更多
关键词 零均值独立 特殊四阶时间平均多矩谱 三次非线性耦合谐波 乘性噪声 加性噪声
下载PDF
FOLMS-AMDCNet:an automatic recognition scheme for multiple-antenna OFDM systems 被引量:1
3
作者 ZHANG Yuyuan YAN Wenjun +1 位作者 ZHANG Limin LING Qing 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2023年第2期307-323,共17页
The existing recognition algorithms of space-time block code(STBC)for multi-antenna(MA)orthogonal frequencydivision multiplexing(OFDM)systems use feature extraction and hypothesis testing to identify the signal types ... The existing recognition algorithms of space-time block code(STBC)for multi-antenna(MA)orthogonal frequencydivision multiplexing(OFDM)systems use feature extraction and hypothesis testing to identify the signal types in a complex communication environment.However,owing to the restrictions on the prior information and channel conditions,these existing algorithms cannot perform well under strong interference and noncooperative communication conditions.To overcome these defects,this study introduces deep learning into the STBCOFDM signal recognition field and proposes a recognition method based on the fourth-order lag moment spectrum(FOLMS)and attention-guided multi-scale dilated convolution network(AMDCNet).The fourth-order lag moment vectors of the received signals are calculated,and vectors are stitched to form two-dimensional FOLMS,which is used as the input of the deep learning-based model.Then,the multi-scale dilated convolution is used to extract the details of images at different scales,and a convolutional block attention module(CBAM)is introduced to construct the attention-guided multi-scale dilated convolution module(AMDCM)to make the network be more focused on the target area and obtian the multi-scale guided features.Finally,the concatenate fusion,residual block and fully-connected layers are applied to acquire the STBC-OFDM signal types.Simulation experiments show that the average recognition probability of the proposed method at−12 dB is higher than 98%.Compared with the existing algorithms,the recognition performance of the proposed method is significantly improved and has good adaptability to environments with strong disturbances.In addition,the proposed deep learning-based model can directly identify the pre-processed FOLMS samples without a priori information on channel and noise,which is more suitable for non-cooperative communication systems than the existing algorithms. 展开更多
关键词 blind signal identification(BSI) space-time block code(STBC) orthogonal frequency-division multiplexing(OFDM) deep learning fourth-order lag moment spectrum(FOLMS)
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部