Quercus arkansana(Arkansas oak)is at risk of becoming endangered,as the total known population size is represented by a few isolated populations.The potential impact of climate change on this species in the near futur...Quercus arkansana(Arkansas oak)is at risk of becoming endangered,as the total known population size is represented by a few isolated populations.The potential impact of climate change on this species in the near future is high,yet knowledge of its predicted effects is limited.Our study utilized the biomod2 R package to develop habi-tat suitability ensemble models based on bioclimatic and topographic environmental variables and the known loca-tions of current distribution of Q.arkansana.We predicted suitable habitats across three climate change scenarios(SSP1-2.6,SSP2-4.5,and SSP5-8.5)for 2050,2070,and 2090.Our findings reveal that the current suitable habitat for Q.arkansana is approximately 127,881 km^(2) across seven states(Texas,Arkansas,Alabama,Louisiana,Mississippi,Georgia,and Florida);approximately 9.5%is encompassed within state and federally managed protected areas.Our models predict that all current suitable habitats will disap-pear by 2050 due to climate change,resulting in a northward shift into new regions such as Tennessee and Kentucky.The large extent of suitable habitat outside protected areas sug-gests that a species-specific action plan incorporating pro-tected areas and other areas may be crucial for its conserva-tion.Moreover,protection of Q.arkansana habitat against climate change may require locally and regionally focused conservation policies,adaptive management strategies,and educational outreach among local people.展开更多
Artificial/seminatural environments,such as aquacultural ponds,saltpans,and croplands,have recently been acknowledged as important habitats for coastal waterbirds.Although coastal waterbirds tend to use artificial hab...Artificial/seminatural environments,such as aquacultural ponds,saltpans,and croplands,have recently been acknowledged as important habitats for coastal waterbirds.Although coastal waterbirds tend to use artificial habitats around tidal flats as roosting sites during high-tide,it remains unclear whether the importance of surrounding habitats relative to tidal flats varies among landscape types,seasons,species,or tidal conditions.The Black-faced Spoonbill(Platalea minor)and Eurasian Spoonbill(P.leucorodia)are two closely related sympatric species in East Asia with narrow and wide distribution ranges and habitat requirements,respectively.We therefore expect that both species will use surrounding artificial habitats across seasons at high tides,but Blackfaced Spoonbills will use them less frequently than Eurasian Spoonbills.Here,we address these hypotheses in the Imazu tidal flat and its surrounding environments in southern Japan.We investigated the habitat use and behavioral patterns of both species through route and behavioral surveys during the fall migration and wintering seasons in 2021.We found that both species used surrounding habitats including artificial ones more frequently than the tidal flat regardless of the tidal condition or season,but spoonbills used these habitats more frequently in winter than in autumn.We also found that Eurasian Spoonbills foraged in surrounding artificial habitats more frequently than Black-faced Spoonbills.These results not only demonstrate how coastal waterbirds exploit surrounding habitats relative to tidal flats but also suggest that the importance of surrounding habitats varies among species and seasons.Our study thus emphasizes that valuing and managing surrounding habitats in addition to tidal flats are key to conserving globally declining waterbirds.展开更多
Climate change has become one of the most critical threats to global biodiversity.However,whether phylogenetically related species respond to climate change in similar ways remains controversial.The answer to this que...Climate change has become one of the most critical threats to global biodiversity.However,whether phylogenetically related species respond to climate change in similar ways remains controversial.The answer to this question is crucial for understanding the impacts of climate change and the conservation on the tree of life.By integrating species distribution models with a molecular phylogeny of 50 threatened plant species from one of the global biodiversity hotspots,Gongga Mountains(Mt.Gongga)in southwest China,we evaluated the responses of threatened plant species to future climate change,and estimated whether species responses are phylogenetically conserved.Phylogenetic reconstruction was used to calculate the phylogenetic distance and null model to verify the reliability of the results.We found that correlations between responses of different species to future climate change decreased with the increase in their phylogenetic distance in the monocotyledonous or herbaceous species,but not in the dicotyledonous and woody species.Our results suggested that the responses of herbaceous and monocotyledonous threatened species in Mt.Gongga to future climate change tend to be phylogenetically conserved,while the responses of woody and dicotyledonous threatened species are not.Our study provides evidence for the existence of phylogenetically non-random extinction in the monocotyledonous herbs in Mt.Gongga and highlights the importance of integrating phylogenetic information and evolutionary history into conservation planning.We also provide theoretical basis and technical support for designing effective conservation schemes for the protection of biodiversity under anthropogenic climate change.展开更多
Background: Gradients in local environmental characteristics may favour the abundance of species with particular traits, while other species decline, or favour species with different traits at the same time, without a...Background: Gradients in local environmental characteristics may favour the abundance of species with particular traits, while other species decline, or favour species with different traits at the same time, without an increase in average species abundances. Therefore, we asked: do variations in species and traits differ along gradients of deadwood variables? Do species abundance and trait occurrence change with species richness within or between functional groups? Thus, we analysed the beetle assemblages of five forest sites located in Italy, along the Apennines mountains.Methods: From 2012 to 2018 we sampled beetles and five deadwood types in 193 plots to characterise the deadwood gradient: standing dead trees, snags, dead downed trees, coarse woody debris, and stumps. We modelled beetle species relative abundances and trophic traits occurrences against the deadwood variables using joint species distribution models.Results: Out of 462 species, only 77 showed significant responses to at least one deadwood type, with a weak mean response across species. Trophic groups showed mostly negative responses to deadwood variables. Species abundance increased with species richness among sites only for phytophagous and saproxylophagous. Trait occurrence did not increase with species richness among sites, except for phytophagous and saproxylophagous.However, trait occurrence changed significantly with species richness of several trophic groups within some sites.We found that increases in species richness do not result in decreases in species abundance of a given trophic group, but rather null or positive relationships were found suggesting low interspecific competition.Conclusions: Our findings suggest that in Mediterranean mountain forests there is still room for increasing the level of naturalness, at least for what concerns deadwood management. On one side, our findings suggest that competition for deadwood substrates is still low, on the other side they indicate that increasing deadwood volume and types to improve overall beetle richness may increase also beetle abundances.展开更多
In recent years,herbicide sulfometuron-methyl(SM)has been used to kill the invasive plant Spartina alterniflora in some coastal areas of China,which may lead to the toxic effects on non-target marine organisms.The 96-...In recent years,herbicide sulfometuron-methyl(SM)has been used to kill the invasive plant Spartina alterniflora in some coastal areas of China,which may lead to the toxic effects on non-target marine organisms.The 96-h median effective concentrations(96-h EC50)of SM on six species of marine microalgae were measured in growth inhibition tests,and were then compared with other published toxicity data,based on which a method of species sensitivity distribution(SSD)was built to estimate the hazardous concentration of SM for 5%of species(HC5)and potentially affected fraction(PAF)for a certain concentration.Results indicate that SM exhibited a high toxicity to two species of green algae(Chlorella pacifica and Dunaliella salina)with a 96-h EC50 of 0.11 and 0.13 mg/L respectively,had a medium toxicity to two species of golden algae(Diacronema viridis and Isochrysis galbana)with a 96-h EC50 of 14.24 and 21.48 mg/L respectively,and showed a low toxicity to two species of diatoms(Skeletonema costatum and Phaeodactylum tricornutum)with a 96-h EC50 of 148.99 and>100 mg/L,respectively.The estimated values of HC5 and the predicted no-effect concentrations(PNEC)for SM were 0.077 and 0.015 mg/L,respectively.According to the current dosage for killing S.alterniflora in tidal flats in Fujian Province,China,SM entering the sea by spraying might cause the acute injury or death of 14%of marine species.This hazard could last for about a month for those sensitive species.Therefore,on the premise of inhibiting the growth of this invasive plant,the dosage of SM should be reduced as much as possible to avoid severe damage to the marine ecosystem.The results provide a valuable information for marine ecological risk assessment on SM and for marine environmental management.展开更多
Abiotic factors play an important role in species localisation,but biotic and anthropogenic predictors must also be considered in distribution modelling for models to be biologically meaningful.In this study,we formal...Abiotic factors play an important role in species localisation,but biotic and anthropogenic predictors must also be considered in distribution modelling for models to be biologically meaningful.In this study,we formalised the biotic predictors of nesting sites for four threatened Caucasian vultures by including species distribution models(wild ungulates,nesting tree species)as biotic layers in the vulture Maxent models.Maxent was applied in the R dismo package and the best set of the model parameters were defined in the R ENMeval package.Performance metrics were continuous Boyce index,Akaike's information criterion,the area under receiver operating curve and true skill statistics.We also calculated and evaluated the null models.Kernel density estimation method was applied to assess the overlap of vulture ecological niches in the environmental space.The accessibility of anthropogenic food resources was estimated using the Path Distance measure that considers elevation gradient.The availability of pine forests(Scots Pine)and wild ungulates(Alpine Chamois and Caucasian Goat)contributed the most(29.6%and 34.3%)to Cinereous Vulture(Aegypius monachus)nesting site model.Wild ungulate distribution also contributed significantly(about 46%)to the Bearded Vulture(Gypaetus barbatus)model.This scavenger nests in the highlands of the Caucasus at a minimum distance of 5–10 km from anthropogenic facilities.In contrast,livestock as a food source was most important in colony distribution of Griffon Vulture(Gyps fulvus).The contribution of distances to settlements and agricultural facilities to the model was 45%.The optimal distance from Egyptian Vulture(Neophron percnopterus)nesting sites to settlements was only 3–10 km,to livestock facilities no more than 15 km with the factor contribution of about 57%.Excluding the wild ungulate availability,the ecological niches of studied vultures overlapped significantly.Despite similar foraging and nesting requirements,Caucasian vultures are not pronounced nesting and trophic competitors due to the abundance of nesting sites,anthropogenic food sources and successful niche sharing.展开更多
Species distribution models have been widely used to explore suitable habitats of species,the impact of climate change on the distribution of suitable habitats of species,and the construction of ecological reserves.Th...Species distribution models have been widely used to explore suitable habitats of species,the impact of climate change on the distribution of suitable habitats of species,and the construction of ecological reserves.This paper introduced species distribution models commonly used in biodiversity analysis,as well as model performance evaluation indexes,challenges in the application of species distribution models,and finally prospected the development trend of research on species distribution models.展开更多
Understanding the mechanisms underlying plant responses to climate change is an important step toward developing effective mitigation strategies. Polyploidy is an important evolutionary trait that can influence the ca...Understanding the mechanisms underlying plant responses to climate change is an important step toward developing effective mitigation strategies. Polyploidy is an important evolutionary trait that can influence the capacity of plants to adapt to climate change. The environmental flexibility of polyploids suggests their resiliency to climate change, however, such hypotheses have not yet received empirical evidence. To understand how ploidy level may influence response to climate change, we modeled the current and future distribution of 54 Crataegus species under moderate to severe environments and compared the range change between diploids and polyploids. The majority of studied species are predicted to experience considerable range expansion. We found a negative interaction between ploidy and ecoregions in determining the response to climate change. In extreme environments, polyploids are projected to experience a higher range expansion than diploids with climate change, while the opposite is true for moderate environments. The range expansion of Crataegus species can be attributed to their tolerance for a wide range of environmental conditions. Despite the higher tolerance of polyploids to extreme environments, they do not necessarily outperform diploids in moderate environments, which can be attributed to the varying nature of species interactions along a stress gradient.展开更多
We examined the global biogeography of the Scytodes thoracica group of spitting spiders based on 23 years of sampling at the species level(61 species in the thoracica group and 84 species of Scytodes)using DNA data fr...We examined the global biogeography of the Scytodes thoracica group of spitting spiders based on 23 years of sampling at the species level(61 species in the thoracica group and 84 species of Scytodes)using DNA data from six loci.Our results indicated that the thoracica group initially dispersed from Southeast Asia to East Africa between 46.5 and 33.0 million years ago,and dispersal events intensified between Southeast/South Asia and East/South Africa from the early to late Miocene.The timing of these events indicates that Asian-African faunal exchange of the thoracica group was driven by the Indian monsoon,and the pattern of dispersal suggests that colonialization took root when the Indian monsoon shifted from a North-South direction to an East-West direction from the middle Eocene.展开更多
Potato cyst nematodes(PCNs)are a significant threat to potato production,having caused substantial damage in many countries.Predicting the future distribution of PCN species is crucial to implementing effective biosec...Potato cyst nematodes(PCNs)are a significant threat to potato production,having caused substantial damage in many countries.Predicting the future distribution of PCN species is crucial to implementing effective biosecurity strategies,especially given the impact of climate change on pest species invasion and distribution.Machine learning(ML),specifically ensemble models,has emerged as a powerful tool in predicting species distributions due to its ability to learn and make predictions based on complex data sets.Thus,this research utilised advanced machine learning techniques to predict the distribution of PCN species under climate change conditions,providing the initial element for invasion risk assessment.We first used Global Climate Models to generate homogeneous climate predictors to mitigate the variation among predictors.Then,five machine learning models were employed to build two groups of ensembles,single-algorithm ensembles(ESA)and multi-algorithm ensembles(EMA),and compared their performances.In this research,the EMA did not always perform better than the ESA,and the ESA of Artificial Neural Network gave the highest performance while being cost-effective.Prediction results indicated that the distribution range of PCNs would shift northward with a decrease in tropical zones and an increase in northern latitudes.However,the total area of suitable regions will not change significantly,occupying 16-20%of the total land surface(18%under current conditions).This research alerts policymakers and practitioners to the risk of PCNs’incursion into new regions.Additionally,this ML process offers the capability to track changes in the distribution of various species and provides scientifically grounded evidence for formulating long-term biosecurity plans for their control.展开更多
The House Martin(Delichon urbicum)is a common farmland bird species in the European landscape,yet its population numbers are currently in decline.However,it is not yet sufficiently explained why this long-term decline...The House Martin(Delichon urbicum)is a common farmland bird species in the European landscape,yet its population numbers are currently in decline.However,it is not yet sufficiently explained why this long-term decline occurs.To fill this gap in our knowledge,we investigated how land cover composition affects the abundance of House Martins on the landscape scale by using nationwide citizen science data.Utilizing a generalised linear mixed-effect model(GLMM),we evaluated 12,094 records from the Czech Republic spanning 2009-2017.Our analysis underscores the significance of land cover type in shaping House Martin abundance.More specifically,our results indicate that within agricultural land covers“naturally managed arable lands”exhibited significant positive effect,while forests,orchards,and vineyards were deemed less favourable for House Martin populations.Within urban land covers,we found a clear distinction in the impact on House Martin populations,with a positive effect observed in urban infrastructure,development areas,and post-industrial sites(i.e.,UrbanAreas),while an indifferent impact was noted within urban green spaces and landscaped areas(i.e.,GreenUrban).Notably,our findings suggest that the simple spatial,age,and species structure typical of forests in Europe,and similarly,the uniform structure of parks and gardens,may be responsible for the decline in the abundance of the House Martin.We advocate for the preservation or enhancement of urban greenery,expansion of natural vegetation in rural areas and adoption of ecological management practices in orchards and vineyards to mitigate further declines in House Martin populations.展开更多
The Qilian Mountains, a national key ecological function zone in Western China, play a pivotal role in ecosystem services. However, the distribution of its dominant tree species, Picea crassifolia (Qinghai spruce), ha...The Qilian Mountains, a national key ecological function zone in Western China, play a pivotal role in ecosystem services. However, the distribution of its dominant tree species, Picea crassifolia (Qinghai spruce), has decreased dramatically in the past decades due to climate change and human activity, which may have influenced its ecological functions. To restore its ecological functions, reasonable reforestation is the key measure. Many previous efforts have predicted the potential distribution of Picea crassifolia, which provides guidance on regional reforestation policy. However, all of them were performed at low spatial resolution, thus ignoring the natural characteristics of the patchy distribution of Picea crassifolia. Here, we modeled the distribution of Picea crassifolia with species distribution models at high spatial resolutions. For many models, the area under the receiver operating characteristic curve (AUC) is larger than 0.9, suggesting their excellent precision. The AUC of models at 30 m is higher than that of models at 90 m, and the current potential distribution of Picea crassifolia is more closely aligned with its actual distribution at 30 m, demonstrating that finer data resolution improves model performance. Besides, for models at 90 m resolution, annual precipitation (Bio12) played the paramount influence on the distribution of Picea crassifolia, while the aspect became the most important one at 30 m, indicating the crucial role of finer topographic data in modeling species with patchy distribution. The current distribution of Picea crassifolia was concentrated in the northern and central parts of the study area, and this pattern will be maintained under future scenarios, although some habitat loss in the central parts and gain in the eastern regions is expected owing to increasing temperatures and precipitation. Our findings can guide protective and restoration strategies for the Qilian Mountains, which would benefit regional ecological balance.展开更多
The survival of agroforestry tree species in sub-Saharan Africa is essential for sustainable livelihoods, particularly in the semi-arid environment. Drought in the Agroecological zones (AEZ) of Nigeria is one of the e...The survival of agroforestry tree species in sub-Saharan Africa is essential for sustainable livelihoods, particularly in the semi-arid environment. Drought in the Agroecological zones (AEZ) of Nigeria is one of the environmental factors limiting parkland tree regeneration. Species distribution modelling offers the opportunity to predict future distributions of plant species based on current distribution data and bioclimatic variables. Maxent (maximum entropy) model was employed to predict the future tree distribution in AEZ parklands, under the four Representative Concentration Pathway (RCP) climate change prediction using current tree distribution (presence-only data) along a transect across three agroecological zones. The spatial data used were 19 bioclimatic variables and presence-only data for the two most important tree species—Parkia biglobosa and Vitellaria paradoxa. The result showed a drastic reduction (>45%) in the suitability of farmlands across predictions observed in the studied agroecological zones. The 2050 scenario in both species predicted areas had an increasing mid-range potential, over 44% lower suitability in sampled AEZ distribution predictions. The future prediction potential distribution maps for year 2070 of both species displayed large variations in suitability compared to 2050, showing a significant increase (up to 53%) in areas climatically suitable for both species to regenerate and thrive. This is attributed to over increased annual evapotranspiration, despite increasing seasonal precipitation. This study highlights the need for more climate-smart regeneration and improved restoration strategies to reduce land degradation as climate conditions change over time.展开更多
We used GIS and maximum entropy to predict the potential distribution of six snake species belong to three families in Kroumiria(Northwestern Tunisia): Natricidae(Natrix maura and Natrix astreptophora), Colubrida...We used GIS and maximum entropy to predict the potential distribution of six snake species belong to three families in Kroumiria(Northwestern Tunisia): Natricidae(Natrix maura and Natrix astreptophora), Colubridae(Hemorrhois hippocrepis, Coronella girondica and Macroprotodon mauritanicus), and Lamprophiidae(Malpolon insignitus). The suitable habitat for each species was modelled using the maximum entropy algorithm, combining presence field data(collected during 16 years:2000–2015) with a set of seven environmental variables(mean annual precipitation, elevation, slope gradient,aspect, distance to watercourses, land surface temperature and normalized Differential Vegetation Index. The relative importance of these environmental variables was evaluated by jackknife tests and the predictive power of our models was assessed using the area under the receiver operating characteristic. The main explicative variables of the species distribution were distance from streams and elevation, with contributions ranging from 60 to 77 and from 10 to 25%,respectively. Our study provided the first habitat suitability models for snakes in Kroumiria and this information can be used by conservation biologists and land managers concerned with preserving snakes in Kroumiria.展开更多
The effects of the calorimetric buffer solutions were investigated while the two colorimetric reactions of AI-ferron complex and Fe-ferron complex occurred individually, and the effects of the testing wavelength and t...The effects of the calorimetric buffer solutions were investigated while the two colorimetric reactions of AI-ferron complex and Fe-ferron complex occurred individually, and the effects of the testing wavelength and the pH of the solutions were also investigated. A timed complexatian colorimetric analysis method of Al-Fe-ferron in view of the total concentration of {AI + Fe} was then established to determine the species distribution of polymeric Al-Fe. The testing wavelength was recommended at 362 net and the testing pH value was 5. With a comparison of the ratios of n(Al)/n(Fe), the standard adsorption curves of the polymeric Al-Fe solutions were derived from the experimental results. Furthermore, the solutions' composition were carious in both the molar n(Al)/n(Fe) ratios, i.e. 0/0, 5/5, 9/1 and 0/10, and the concentrations associated with the total ( Al + Fe which ranged from 10(-5) to 10(-4) mol/L..展开更多
Knowledge on the potential suitability of tree species to the site is very important for forest management planning.Natural forest distribution provides a good reference for afforestation and forest restoration.In thi...Knowledge on the potential suitability of tree species to the site is very important for forest management planning.Natural forest distribution provides a good reference for afforestation and forest restoration.In this study,we developed species distribution model(SDM)for 16 major tree species with 2,825 permanent sample plots with natural origin from Chinese National Forest Inventory data collected in Jilin Province using the Maxent model.Three types of environmental factors including bioclimate,soil and topography with a total of 33 variables were tested as the input.The values of area under the curve(AUC,one of the receiver operating characteristics of the Maxent model)in the training and test datasets were between 0.784 and 0.968,indicating that the prediction results were quite reliable.The environmental factors affecting the distribution of species were ranked in terms of their importance to the species distribution.Generally,the climatic factors had the greatest contribution,which included mean diurnal range,annual mean temperature,temperature annual range,and iosthermality.But the main environmental factors varied with tree species.Distribution suitability maps under current(1950-2000)and future climate scenarios(CCSM4-RCP 2.6 and RCP 6.0 during 2050)were produced for 16 major tree species in Jilin Province using the model developed.The predicted current and future ranges of habitat suitability of the 16 tree species are likely to be positively and negatively affected by future climate.Seven tree species were found to benefit from future climate including B etula costata,Fraxinus mandshurica,Juglans mandshurica,Phellodendron amurense,Populus ussuriensis,Quercus mongolica and Ulmus pumila;five tree species will experience decline in their suitable habitat including B.platyphylla,Tilia mongolica,Picea asperata,Pinus sylvestris,Pinus koraiensis;and four(Salix koreensis,Abies fabri,Pinus densiflora and Larix olgensis)showed the inconsistency under RCP 2.6 and RCP 6.0 scenarios.The maps of the habitat suitability can be used as a basis for afforestation and forest restoration in northeastern China.The SDMs could be a potential tool for forest management planning.展开更多
Predictive studies play a crucial role in the study of biological invasions of terrestrial plants under possible climate change scenarios.Invasive species are recognized for their ability to modify soil microbial comm...Predictive studies play a crucial role in the study of biological invasions of terrestrial plants under possible climate change scenarios.Invasive species are recognized for their ability to modify soil microbial communities and influence ecosystem dynamics.Here,we focused on six species of allelopathic flowering plants-Ailanthus altissima,Casuarina equisetifolia,Centaurea stoebe ssp.micranthos,Dioscorea bulbifera,Lantana camara,and Schinus terebinthifolia-Xhat are invasive in North America and examined their potential to spread further during projected climate change.We used Species Distribution Models(SDMs)to predict future suitable areas for these species in North America under several proposed future climate models.ENMEval and Maxent were used to develop SDMs,estimate current distributions,and predict future areas of suitable climate for each species.Areas with the greatest predicted suitable climate in the future include the northeastern and the coastal northwestern regions of North America.Range size estimations demonstrate the possibility of extreme range loss for these invasives in the southeastern United States,while new areas may become suitable in the northeastern United States and southeastern Canada.These findings show an overall northward shift of suitable climate during the next few decades,given projected changes in temperature and precipitation.Our results can be utilized to analyze potential shifts in the distribution of these invasive species and may aid in the development of conservation and management plans to target and control dissemination in areas at higher risk for potential future invasion by these allelopathic species.展开更多
The study of plant species abundance distribution(SAD)in natural communities is of considerable importance to understand the processes and ecological rules of community assembly.With the distribution of tree,shrub and...The study of plant species abundance distribution(SAD)in natural communities is of considerable importance to understand the processes and ecological rules of community assembly.With the distribution of tree,shrub and herb layers of eight natural communities of Toona ciliata as research targets,three diff erent ecological niche models were used:broken stick model,overlapping niche model and niche preemption model,as well as three statistical models:log-series distribution model,log-normal distribution model and Weibull distribution model,to fi t SAD of the diff erent vegetation layers based on data collected.Goodness-of-fi t was compared with Chi square test,Kolmogorov–Smirnov(K–S)test and Akaike Information Criterion(AIC).The results show:(1)based on the criteria of the lowest AIC value,Chi square value and K–S value with no signifi cant diff erence(p>0.05)between theoretic and observed SADs.The suitability and goodness-of-fi t of the broken stick model was the best of three ecological niche models.The log-series distribution model did not accept the fi tted results of most vegetation layers and had the lowest goodness-of-fi t.The Weibull distribution model had the best goodness-of-fi t for SADs.Overall,the statistical SADs performed better than the ecological ones.(2)T.ciliata was the dominant species in all the communities;species richness and diversity of herbs were the highest of the vegetation layers,while the diversities of the tree layers were slightly higher than the shrub layers;there were fewer common species and more rare species in the eight communities.The herb layers had the highest community evenness,followed by the shrub and the tree layers.Due to the complexity and habitat diversity of the diff erent T.ciliata communities,comprehensive analyses of a variety of SADs and tests for optimal models together with management,are practical steps to enhance understanding of ecological processes and mechanisms of T.ciliata communities,to detect disturbances,and to facilitate biodiversity and species conservation.展开更多
We proposed a theoretical spatio-temporal imaging method,which was based on the thermal model of laser ablation and the two-dimensional axisymmetric multi-species hydrodynamics model.By using the intensity formula,the...We proposed a theoretical spatio-temporal imaging method,which was based on the thermal model of laser ablation and the two-dimensional axisymmetric multi-species hydrodynamics model.By using the intensity formula,the integral intensity of spectral lines could be calculated and the corresponding images of intensity distribution could be drawn.Through further image processing such as normalization,determination of minimum intensity,combination and color filtering,a relatively clear species distribution image in the plasma could be obtained.Using the above method,we simulated the plasma ablated from Al-Mg alloy by different laser energies under 1 atm argon,and obtained the theoretical spatio-temporal distributions of Mg I,Mg II,Al I,Al II and Ar I species,which are almost consistent with the experimental results by differential imaging.Compared with the experimental decay time constants,the consistency is higher at low laser energy,indicating that our theoretical model is more suitable for the plasma dominated by laser-supported combustion wave.展开更多
Elevational patterns of tree diversity are well studied worldwide.However,few studies have examined how seedlings respond to elevational gradients and whether their responses vary across climatic zones.In this study,w...Elevational patterns of tree diversity are well studied worldwide.However,few studies have examined how seedlings respond to elevational gradients and whether their responses vary across climatic zones.In this study,we established three elevational transects in tropical,subtropical and subalpine mountain forests in Yunnan Province,southern China,to examine the responses of tree species and their seedlings to elevational gradients.Within each transect,we calculated species diversity indices and composition of both adult trees and seedlings at different elevations.For both adult trees and seedlings,we found that species diversity decreased with increasing elevation in both tropical and subalpine transects.Species composition showed significant elevational separation within all three transects.Many species had specific elevational preferences,but abundant tree species that occurred at specific elevations tended to have very limited recruitment in the understory.Our results highlight that the major factors that determine elevational distributions of tree species vary across climatic zones.Specifically,we found that the contribution of air temperature to tree species composition increased from tropical to subalpine transects,whereas the contribution of soil moisture decreased across these transects.展开更多
基金The work was partially supported by research project funding from the Undergraduate Research Grant,Arkansas Tech University.
文摘Quercus arkansana(Arkansas oak)is at risk of becoming endangered,as the total known population size is represented by a few isolated populations.The potential impact of climate change on this species in the near future is high,yet knowledge of its predicted effects is limited.Our study utilized the biomod2 R package to develop habi-tat suitability ensemble models based on bioclimatic and topographic environmental variables and the known loca-tions of current distribution of Q.arkansana.We predicted suitable habitats across three climate change scenarios(SSP1-2.6,SSP2-4.5,and SSP5-8.5)for 2050,2070,and 2090.Our findings reveal that the current suitable habitat for Q.arkansana is approximately 127,881 km^(2) across seven states(Texas,Arkansas,Alabama,Louisiana,Mississippi,Georgia,and Florida);approximately 9.5%is encompassed within state and federally managed protected areas.Our models predict that all current suitable habitats will disap-pear by 2050 due to climate change,resulting in a northward shift into new regions such as Tennessee and Kentucky.The large extent of suitable habitat outside protected areas sug-gests that a species-specific action plan incorporating pro-tected areas and other areas may be crucial for its conserva-tion.Moreover,protection of Q.arkansana habitat against climate change may require locally and regionally focused conservation policies,adaptive management strategies,and educational outreach among local people.
文摘Artificial/seminatural environments,such as aquacultural ponds,saltpans,and croplands,have recently been acknowledged as important habitats for coastal waterbirds.Although coastal waterbirds tend to use artificial habitats around tidal flats as roosting sites during high-tide,it remains unclear whether the importance of surrounding habitats relative to tidal flats varies among landscape types,seasons,species,or tidal conditions.The Black-faced Spoonbill(Platalea minor)and Eurasian Spoonbill(P.leucorodia)are two closely related sympatric species in East Asia with narrow and wide distribution ranges and habitat requirements,respectively.We therefore expect that both species will use surrounding artificial habitats across seasons at high tides,but Blackfaced Spoonbills will use them less frequently than Eurasian Spoonbills.Here,we address these hypotheses in the Imazu tidal flat and its surrounding environments in southern Japan.We investigated the habitat use and behavioral patterns of both species through route and behavioral surveys during the fall migration and wintering seasons in 2021.We found that both species used surrounding habitats including artificial ones more frequently than the tidal flat regardless of the tidal condition or season,but spoonbills used these habitats more frequently in winter than in autumn.We also found that Eurasian Spoonbills foraged in surrounding artificial habitats more frequently than Black-faced Spoonbills.These results not only demonstrate how coastal waterbirds exploit surrounding habitats relative to tidal flats but also suggest that the importance of surrounding habitats varies among species and seasons.Our study thus emphasizes that valuing and managing surrounding habitats in addition to tidal flats are key to conserving globally declining waterbirds.
基金supported by the National Key Research Development Program of China(#2022YFF0802300)the Jiangxi Provincial Natural Science Foundation(20224BAB213033,20232BAB205023)+2 种基金Jiangxi Provincial Department of Education Science and Technology Research Project(GJJ2200433)the National Natural Science Foundation of China(31988102,32125026,32301463)the Strategic Priority Research Program of the Chinese Academy of Sciences(XDB31000000)。
文摘Climate change has become one of the most critical threats to global biodiversity.However,whether phylogenetically related species respond to climate change in similar ways remains controversial.The answer to this question is crucial for understanding the impacts of climate change and the conservation on the tree of life.By integrating species distribution models with a molecular phylogeny of 50 threatened plant species from one of the global biodiversity hotspots,Gongga Mountains(Mt.Gongga)in southwest China,we evaluated the responses of threatened plant species to future climate change,and estimated whether species responses are phylogenetically conserved.Phylogenetic reconstruction was used to calculate the phylogenetic distance and null model to verify the reliability of the results.We found that correlations between responses of different species to future climate change decreased with the increase in their phylogenetic distance in the monocotyledonous or herbaceous species,but not in the dicotyledonous and woody species.Our results suggested that the responses of herbaceous and monocotyledonous threatened species in Mt.Gongga to future climate change tend to be phylogenetically conserved,while the responses of woody and dicotyledonous threatened species are not.Our study provides evidence for the existence of phylogenetically non-random extinction in the monocotyledonous herbs in Mt.Gongga and highlights the importance of integrating phylogenetic information and evolutionary history into conservation planning.We also provide theoretical basis and technical support for designing effective conservation schemes for the protection of biodiversity under anthropogenic climate change.
基金funded by CONACYT for funding provided through project A1-S-21471。
文摘Background: Gradients in local environmental characteristics may favour the abundance of species with particular traits, while other species decline, or favour species with different traits at the same time, without an increase in average species abundances. Therefore, we asked: do variations in species and traits differ along gradients of deadwood variables? Do species abundance and trait occurrence change with species richness within or between functional groups? Thus, we analysed the beetle assemblages of five forest sites located in Italy, along the Apennines mountains.Methods: From 2012 to 2018 we sampled beetles and five deadwood types in 193 plots to characterise the deadwood gradient: standing dead trees, snags, dead downed trees, coarse woody debris, and stumps. We modelled beetle species relative abundances and trophic traits occurrences against the deadwood variables using joint species distribution models.Results: Out of 462 species, only 77 showed significant responses to at least one deadwood type, with a weak mean response across species. Trophic groups showed mostly negative responses to deadwood variables. Species abundance increased with species richness among sites only for phytophagous and saproxylophagous. Trait occurrence did not increase with species richness among sites, except for phytophagous and saproxylophagous.However, trait occurrence changed significantly with species richness of several trophic groups within some sites.We found that increases in species richness do not result in decreases in species abundance of a given trophic group, but rather null or positive relationships were found suggesting low interspecific competition.Conclusions: Our findings suggest that in Mediterranean mountain forests there is still room for increasing the level of naturalness, at least for what concerns deadwood management. On one side, our findings suggest that competition for deadwood substrates is still low, on the other side they indicate that increasing deadwood volume and types to improve overall beetle richness may increase also beetle abundances.
基金Supported by the National Natural Science Foundation of China(No.42077335)。
文摘In recent years,herbicide sulfometuron-methyl(SM)has been used to kill the invasive plant Spartina alterniflora in some coastal areas of China,which may lead to the toxic effects on non-target marine organisms.The 96-h median effective concentrations(96-h EC50)of SM on six species of marine microalgae were measured in growth inhibition tests,and were then compared with other published toxicity data,based on which a method of species sensitivity distribution(SSD)was built to estimate the hazardous concentration of SM for 5%of species(HC5)and potentially affected fraction(PAF)for a certain concentration.Results indicate that SM exhibited a high toxicity to two species of green algae(Chlorella pacifica and Dunaliella salina)with a 96-h EC50 of 0.11 and 0.13 mg/L respectively,had a medium toxicity to two species of golden algae(Diacronema viridis and Isochrysis galbana)with a 96-h EC50 of 14.24 and 21.48 mg/L respectively,and showed a low toxicity to two species of diatoms(Skeletonema costatum and Phaeodactylum tricornutum)with a 96-h EC50 of 148.99 and>100 mg/L,respectively.The estimated values of HC5 and the predicted no-effect concentrations(PNEC)for SM were 0.077 and 0.015 mg/L,respectively.According to the current dosage for killing S.alterniflora in tidal flats in Fujian Province,China,SM entering the sea by spraying might cause the acute injury or death of 14%of marine species.This hazard could last for about a month for those sensitive species.Therefore,on the premise of inhibiting the growth of this invasive plant,the dosage of SM should be reduced as much as possible to avoid severe damage to the marine ecosystem.The results provide a valuable information for marine ecological risk assessment on SM and for marine environmental management.
基金the State Assignment,project 075-00347-19-00(Patterns of the spatiotemporal dynamics of meadow and forest ecosystems in mountainous areas(Russian Western and Central Caucasus)WWF's‘Save the Forest-Home of Raptors’project(2020-2022).
文摘Abiotic factors play an important role in species localisation,but biotic and anthropogenic predictors must also be considered in distribution modelling for models to be biologically meaningful.In this study,we formalised the biotic predictors of nesting sites for four threatened Caucasian vultures by including species distribution models(wild ungulates,nesting tree species)as biotic layers in the vulture Maxent models.Maxent was applied in the R dismo package and the best set of the model parameters were defined in the R ENMeval package.Performance metrics were continuous Boyce index,Akaike's information criterion,the area under receiver operating curve and true skill statistics.We also calculated and evaluated the null models.Kernel density estimation method was applied to assess the overlap of vulture ecological niches in the environmental space.The accessibility of anthropogenic food resources was estimated using the Path Distance measure that considers elevation gradient.The availability of pine forests(Scots Pine)and wild ungulates(Alpine Chamois and Caucasian Goat)contributed the most(29.6%and 34.3%)to Cinereous Vulture(Aegypius monachus)nesting site model.Wild ungulate distribution also contributed significantly(about 46%)to the Bearded Vulture(Gypaetus barbatus)model.This scavenger nests in the highlands of the Caucasus at a minimum distance of 5–10 km from anthropogenic facilities.In contrast,livestock as a food source was most important in colony distribution of Griffon Vulture(Gyps fulvus).The contribution of distances to settlements and agricultural facilities to the model was 45%.The optimal distance from Egyptian Vulture(Neophron percnopterus)nesting sites to settlements was only 3–10 km,to livestock facilities no more than 15 km with the factor contribution of about 57%.Excluding the wild ungulate availability,the ecological niches of studied vultures overlapped significantly.Despite similar foraging and nesting requirements,Caucasian vultures are not pronounced nesting and trophic competitors due to the abundance of nesting sites,anthropogenic food sources and successful niche sharing.
基金Supported by Natural Science Foundation of Hunan Province (2021JJ30375)Natural Science Foundation of Hunan Provincial Department of Education (20A275)Science and Technology Innovation Team Project of Hunan Province (201937924).
文摘Species distribution models have been widely used to explore suitable habitats of species,the impact of climate change on the distribution of suitable habitats of species,and the construction of ecological reserves.This paper introduced species distribution models commonly used in biodiversity analysis,as well as model performance evaluation indexes,challenges in the application of species distribution models,and finally prospected the development trend of research on species distribution models.
文摘Understanding the mechanisms underlying plant responses to climate change is an important step toward developing effective mitigation strategies. Polyploidy is an important evolutionary trait that can influence the capacity of plants to adapt to climate change. The environmental flexibility of polyploids suggests their resiliency to climate change, however, such hypotheses have not yet received empirical evidence. To understand how ploidy level may influence response to climate change, we modeled the current and future distribution of 54 Crataegus species under moderate to severe environments and compared the range change between diploids and polyploids. The majority of studied species are predicted to experience considerable range expansion. We found a negative interaction between ploidy and ecoregions in determining the response to climate change. In extreme environments, polyploids are projected to experience a higher range expansion than diploids with climate change, while the opposite is true for moderate environments. The range expansion of Crataegus species can be attributed to their tolerance for a wide range of environmental conditions. Despite the higher tolerance of polyploids to extreme environments, they do not necessarily outperform diploids in moderate environments, which can be attributed to the varying nature of species interactions along a stress gradient.
基金supported by the Strategic Priority Research Program of the Chinese Academy of Sciences to S.Q.L.(XDB31000000)National Natural Sciences Foundation of China to Y.F.L.(NSFC-31860602,32170463,31660611)。
文摘We examined the global biogeography of the Scytodes thoracica group of spitting spiders based on 23 years of sampling at the species level(61 species in the thoracica group and 84 species of Scytodes)using DNA data from six loci.Our results indicated that the thoracica group initially dispersed from Southeast Asia to East Africa between 46.5 and 33.0 million years ago,and dispersal events intensified between Southeast/South Asia and East/South Africa from the early to late Miocene.The timing of these events indicates that Asian-African faunal exchange of the thoracica group was driven by the Indian monsoon,and the pattern of dispersal suggests that colonialization took root when the Indian monsoon shifted from a North-South direction to an East-West direction from the middle Eocene.
基金funded by the National Key R&D Program of China(2021YFD1400200)the Taishan Scholar Constructive Engineering Foundation of Shandong,China(tstp20221135)。
文摘Potato cyst nematodes(PCNs)are a significant threat to potato production,having caused substantial damage in many countries.Predicting the future distribution of PCN species is crucial to implementing effective biosecurity strategies,especially given the impact of climate change on pest species invasion and distribution.Machine learning(ML),specifically ensemble models,has emerged as a powerful tool in predicting species distributions due to its ability to learn and make predictions based on complex data sets.Thus,this research utilised advanced machine learning techniques to predict the distribution of PCN species under climate change conditions,providing the initial element for invasion risk assessment.We first used Global Climate Models to generate homogeneous climate predictors to mitigate the variation among predictors.Then,five machine learning models were employed to build two groups of ensembles,single-algorithm ensembles(ESA)and multi-algorithm ensembles(EMA),and compared their performances.In this research,the EMA did not always perform better than the ESA,and the ESA of Artificial Neural Network gave the highest performance while being cost-effective.Prediction results indicated that the distribution range of PCNs would shift northward with a decrease in tropical zones and an increase in northern latitudes.However,the total area of suitable regions will not change significantly,occupying 16-20%of the total land surface(18%under current conditions).This research alerts policymakers and practitioners to the risk of PCNs’incursion into new regions.Additionally,this ML process offers the capability to track changes in the distribution of various species and provides scientifically grounded evidence for formulating long-term biosecurity plans for their control.
基金supported by an internal grant agency from the Faculty of AgriSciences of Mendel University in Brno(AF-IGA2022-IP-034).
文摘The House Martin(Delichon urbicum)is a common farmland bird species in the European landscape,yet its population numbers are currently in decline.However,it is not yet sufficiently explained why this long-term decline occurs.To fill this gap in our knowledge,we investigated how land cover composition affects the abundance of House Martins on the landscape scale by using nationwide citizen science data.Utilizing a generalised linear mixed-effect model(GLMM),we evaluated 12,094 records from the Czech Republic spanning 2009-2017.Our analysis underscores the significance of land cover type in shaping House Martin abundance.More specifically,our results indicate that within agricultural land covers“naturally managed arable lands”exhibited significant positive effect,while forests,orchards,and vineyards were deemed less favourable for House Martin populations.Within urban land covers,we found a clear distinction in the impact on House Martin populations,with a positive effect observed in urban infrastructure,development areas,and post-industrial sites(i.e.,UrbanAreas),while an indifferent impact was noted within urban green spaces and landscaped areas(i.e.,GreenUrban).Notably,our findings suggest that the simple spatial,age,and species structure typical of forests in Europe,and similarly,the uniform structure of parks and gardens,may be responsible for the decline in the abundance of the House Martin.We advocate for the preservation or enhancement of urban greenery,expansion of natural vegetation in rural areas and adoption of ecological management practices in orchards and vineyards to mitigate further declines in House Martin populations.
基金supported by the National Natural Science Foundation of China(No.42071057).
文摘The Qilian Mountains, a national key ecological function zone in Western China, play a pivotal role in ecosystem services. However, the distribution of its dominant tree species, Picea crassifolia (Qinghai spruce), has decreased dramatically in the past decades due to climate change and human activity, which may have influenced its ecological functions. To restore its ecological functions, reasonable reforestation is the key measure. Many previous efforts have predicted the potential distribution of Picea crassifolia, which provides guidance on regional reforestation policy. However, all of them were performed at low spatial resolution, thus ignoring the natural characteristics of the patchy distribution of Picea crassifolia. Here, we modeled the distribution of Picea crassifolia with species distribution models at high spatial resolutions. For many models, the area under the receiver operating characteristic curve (AUC) is larger than 0.9, suggesting their excellent precision. The AUC of models at 30 m is higher than that of models at 90 m, and the current potential distribution of Picea crassifolia is more closely aligned with its actual distribution at 30 m, demonstrating that finer data resolution improves model performance. Besides, for models at 90 m resolution, annual precipitation (Bio12) played the paramount influence on the distribution of Picea crassifolia, while the aspect became the most important one at 30 m, indicating the crucial role of finer topographic data in modeling species with patchy distribution. The current distribution of Picea crassifolia was concentrated in the northern and central parts of the study area, and this pattern will be maintained under future scenarios, although some habitat loss in the central parts and gain in the eastern regions is expected owing to increasing temperatures and precipitation. Our findings can guide protective and restoration strategies for the Qilian Mountains, which would benefit regional ecological balance.
文摘The survival of agroforestry tree species in sub-Saharan Africa is essential for sustainable livelihoods, particularly in the semi-arid environment. Drought in the Agroecological zones (AEZ) of Nigeria is one of the environmental factors limiting parkland tree regeneration. Species distribution modelling offers the opportunity to predict future distributions of plant species based on current distribution data and bioclimatic variables. Maxent (maximum entropy) model was employed to predict the future tree distribution in AEZ parklands, under the four Representative Concentration Pathway (RCP) climate change prediction using current tree distribution (presence-only data) along a transect across three agroecological zones. The spatial data used were 19 bioclimatic variables and presence-only data for the two most important tree species—Parkia biglobosa and Vitellaria paradoxa. The result showed a drastic reduction (>45%) in the suitability of farmlands across predictions observed in the studied agroecological zones. The 2050 scenario in both species predicted areas had an increasing mid-range potential, over 44% lower suitability in sampled AEZ distribution predictions. The future prediction potential distribution maps for year 2070 of both species displayed large variations in suitability compared to 2050, showing a significant increase (up to 53%) in areas climatically suitable for both species to regenerate and thrive. This is attributed to over increased annual evapotranspiration, despite increasing seasonal precipitation. This study highlights the need for more climate-smart regeneration and improved restoration strategies to reduce land degradation as climate conditions change over time.
基金Funding support for this work was provided by the Silvo-Pastoral Institute of Tabarka
文摘We used GIS and maximum entropy to predict the potential distribution of six snake species belong to three families in Kroumiria(Northwestern Tunisia): Natricidae(Natrix maura and Natrix astreptophora), Colubridae(Hemorrhois hippocrepis, Coronella girondica and Macroprotodon mauritanicus), and Lamprophiidae(Malpolon insignitus). The suitable habitat for each species was modelled using the maximum entropy algorithm, combining presence field data(collected during 16 years:2000–2015) with a set of seven environmental variables(mean annual precipitation, elevation, slope gradient,aspect, distance to watercourses, land surface temperature and normalized Differential Vegetation Index. The relative importance of these environmental variables was evaluated by jackknife tests and the predictive power of our models was assessed using the area under the receiver operating characteristic. The main explicative variables of the species distribution were distance from streams and elevation, with contributions ranging from 60 to 77 and from 10 to 25%,respectively. Our study provided the first habitat suitability models for snakes in Kroumiria and this information can be used by conservation biologists and land managers concerned with preserving snakes in Kroumiria.
基金TheNationalNaturalScienceFoundationofChina (No .2 96 770 0 4)
文摘The effects of the calorimetric buffer solutions were investigated while the two colorimetric reactions of AI-ferron complex and Fe-ferron complex occurred individually, and the effects of the testing wavelength and the pH of the solutions were also investigated. A timed complexatian colorimetric analysis method of Al-Fe-ferron in view of the total concentration of {AI + Fe} was then established to determine the species distribution of polymeric Al-Fe. The testing wavelength was recommended at 362 net and the testing pH value was 5. With a comparison of the ratios of n(Al)/n(Fe), the standard adsorption curves of the polymeric Al-Fe solutions were derived from the experimental results. Furthermore, the solutions' composition were carious in both the molar n(Al)/n(Fe) ratios, i.e. 0/0, 5/5, 9/1 and 0/10, and the concentrations associated with the total ( Al + Fe which ranged from 10(-5) to 10(-4) mol/L..
基金supported by the forestry public welfare scientific research project(Grant No.201504303)。
文摘Knowledge on the potential suitability of tree species to the site is very important for forest management planning.Natural forest distribution provides a good reference for afforestation and forest restoration.In this study,we developed species distribution model(SDM)for 16 major tree species with 2,825 permanent sample plots with natural origin from Chinese National Forest Inventory data collected in Jilin Province using the Maxent model.Three types of environmental factors including bioclimate,soil and topography with a total of 33 variables were tested as the input.The values of area under the curve(AUC,one of the receiver operating characteristics of the Maxent model)in the training and test datasets were between 0.784 and 0.968,indicating that the prediction results were quite reliable.The environmental factors affecting the distribution of species were ranked in terms of their importance to the species distribution.Generally,the climatic factors had the greatest contribution,which included mean diurnal range,annual mean temperature,temperature annual range,and iosthermality.But the main environmental factors varied with tree species.Distribution suitability maps under current(1950-2000)and future climate scenarios(CCSM4-RCP 2.6 and RCP 6.0 during 2050)were produced for 16 major tree species in Jilin Province using the model developed.The predicted current and future ranges of habitat suitability of the 16 tree species are likely to be positively and negatively affected by future climate.Seven tree species were found to benefit from future climate including B etula costata,Fraxinus mandshurica,Juglans mandshurica,Phellodendron amurense,Populus ussuriensis,Quercus mongolica and Ulmus pumila;five tree species will experience decline in their suitable habitat including B.platyphylla,Tilia mongolica,Picea asperata,Pinus sylvestris,Pinus koraiensis;and four(Salix koreensis,Abies fabri,Pinus densiflora and Larix olgensis)showed the inconsistency under RCP 2.6 and RCP 6.0 scenarios.The maps of the habitat suitability can be used as a basis for afforestation and forest restoration in northeastern China.The SDMs could be a potential tool for forest management planning.
基金This research was supported by NSF grants DBI-1458640 and DBI-1547229.
文摘Predictive studies play a crucial role in the study of biological invasions of terrestrial plants under possible climate change scenarios.Invasive species are recognized for their ability to modify soil microbial communities and influence ecosystem dynamics.Here,we focused on six species of allelopathic flowering plants-Ailanthus altissima,Casuarina equisetifolia,Centaurea stoebe ssp.micranthos,Dioscorea bulbifera,Lantana camara,and Schinus terebinthifolia-Xhat are invasive in North America and examined their potential to spread further during projected climate change.We used Species Distribution Models(SDMs)to predict future suitable areas for these species in North America under several proposed future climate models.ENMEval and Maxent were used to develop SDMs,estimate current distributions,and predict future areas of suitable climate for each species.Areas with the greatest predicted suitable climate in the future include the northeastern and the coastal northwestern regions of North America.Range size estimations demonstrate the possibility of extreme range loss for these invasives in the southeastern United States,while new areas may become suitable in the northeastern United States and southeastern Canada.These findings show an overall northward shift of suitable climate during the next few decades,given projected changes in temperature and precipitation.Our results can be utilized to analyze potential shifts in the distribution of these invasive species and may aid in the development of conservation and management plans to target and control dissemination in areas at higher risk for potential future invasion by these allelopathic species.
基金Hubei Provincial Department of Science and Technology,under the public welfare research project[No.402012DBA40001]Hubei Provincial Department of Education,under the scientifi c research project[No.B20160555].
文摘The study of plant species abundance distribution(SAD)in natural communities is of considerable importance to understand the processes and ecological rules of community assembly.With the distribution of tree,shrub and herb layers of eight natural communities of Toona ciliata as research targets,three diff erent ecological niche models were used:broken stick model,overlapping niche model and niche preemption model,as well as three statistical models:log-series distribution model,log-normal distribution model and Weibull distribution model,to fi t SAD of the diff erent vegetation layers based on data collected.Goodness-of-fi t was compared with Chi square test,Kolmogorov–Smirnov(K–S)test and Akaike Information Criterion(AIC).The results show:(1)based on the criteria of the lowest AIC value,Chi square value and K–S value with no signifi cant diff erence(p>0.05)between theoretic and observed SADs.The suitability and goodness-of-fi t of the broken stick model was the best of three ecological niche models.The log-series distribution model did not accept the fi tted results of most vegetation layers and had the lowest goodness-of-fi t.The Weibull distribution model had the best goodness-of-fi t for SADs.Overall,the statistical SADs performed better than the ecological ones.(2)T.ciliata was the dominant species in all the communities;species richness and diversity of herbs were the highest of the vegetation layers,while the diversities of the tree layers were slightly higher than the shrub layers;there were fewer common species and more rare species in the eight communities.The herb layers had the highest community evenness,followed by the shrub and the tree layers.Due to the complexity and habitat diversity of the diff erent T.ciliata communities,comprehensive analyses of a variety of SADs and tests for optimal models together with management,are practical steps to enhance understanding of ecological processes and mechanisms of T.ciliata communities,to detect disturbances,and to facilitate biodiversity and species conservation.
基金supported by National Key R&D Program of China(No.2017YFA0304203)National Energy R&D Center of Petroleum Refining Technology(RIPP,SINOPEC)+4 种基金Changjiang Scholars and Innovative Research Team in University of Ministry of Education of China(No.IRT_17R70)National Natural Science Foundation of China(NSFC)(Nos.61975103,61875108,61775125,11434007)Major Special Science and Technology Projects in Shanxi(No.201804D131036)111 Project(No.D18001)Fund for Shanxi‘1331KSC’。
文摘We proposed a theoretical spatio-temporal imaging method,which was based on the thermal model of laser ablation and the two-dimensional axisymmetric multi-species hydrodynamics model.By using the intensity formula,the integral intensity of spectral lines could be calculated and the corresponding images of intensity distribution could be drawn.Through further image processing such as normalization,determination of minimum intensity,combination and color filtering,a relatively clear species distribution image in the plasma could be obtained.Using the above method,we simulated the plasma ablated from Al-Mg alloy by different laser energies under 1 atm argon,and obtained the theoretical spatio-temporal distributions of Mg I,Mg II,Al I,Al II and Ar I species,which are almost consistent with the experimental results by differential imaging.Compared with the experimental decay time constants,the consistency is higher at low laser energy,indicating that our theoretical model is more suitable for the plasma dominated by laser-supported combustion wave.
基金supported by the National Natural Science Foundation of China(31800353 and 32061123003)the West Light Foundation of the Chinese Academy of Sciences,the Applied Fundamental Research Foundation of Yunnan Province(2019FB038,2014GA003 and 2013FB079)the National Key Basic Research Program of China(2014CB954100)and the QueenslandeChinese Academy of Sciences Biotechnology Fund(GJHZ1130).
文摘Elevational patterns of tree diversity are well studied worldwide.However,few studies have examined how seedlings respond to elevational gradients and whether their responses vary across climatic zones.In this study,we established three elevational transects in tropical,subtropical and subalpine mountain forests in Yunnan Province,southern China,to examine the responses of tree species and their seedlings to elevational gradients.Within each transect,we calculated species diversity indices and composition of both adult trees and seedlings at different elevations.For both adult trees and seedlings,we found that species diversity decreased with increasing elevation in both tropical and subalpine transects.Species composition showed significant elevational separation within all three transects.Many species had specific elevational preferences,but abundant tree species that occurred at specific elevations tended to have very limited recruitment in the understory.Our results highlight that the major factors that determine elevational distributions of tree species vary across climatic zones.Specifically,we found that the contribution of air temperature to tree species composition increased from tropical to subalpine transects,whereas the contribution of soil moisture decreased across these transects.