Composites of carbon aerogel and graphite oxide(GO) were synthesized using a self-assembly method based on dispersive forces. Their surface was modified by treatment in hydrogen sulfide at 650 and800 ℃. The samples...Composites of carbon aerogel and graphite oxide(GO) were synthesized using a self-assembly method based on dispersive forces. Their surface was modified by treatment in hydrogen sulfide at 650 and800 ℃. The samples obtained were characterized by adsorption of nitrogen, TA-MS, XPS, potentiometric titration, and HRTEM and tested as catalysts for oxygen reduction reactions(ORR) in an alkaline medium.The synergistic effect of the composite(electrical conductivity, porosity and surface chemistry) leads to a good ORR catalytic activity. The onset potential for the composite of carbon aerogel heated at 800 ℃ is shifted to a more positive value and the number of electron transfer was 2e-at the potential 0.68 V versus RHE and it increased to 4e-with an increase in the negative values of the potential. An excellent tolerance to methanol crossover was also recorded.展开更多
Novel and highly durable air cathode electrocatalyst with three dimensional (3D)-clam-shaped structure, MnO2 nanotubes-supported Fe2O3 (Fe2O3/MnO2) composited by carbon nanotubes (CNTs) ((Fe2O3/ MnO2)3/4-(C...Novel and highly durable air cathode electrocatalyst with three dimensional (3D)-clam-shaped structure, MnO2 nanotubes-supported Fe2O3 (Fe2O3/MnO2) composited by carbon nanotubes (CNTs) ((Fe2O3/ MnO2)3/4-(CNTs)1/4) is synthesized using a facile hydrothermal process and a following direct heat- treatment in the air. The morphology and composition of this catalyst are analyzed using scanning elec- tronic microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD) and energy dispersive X-ray spectroscopy (EDX). The morphology characteristics reveal that flower-like Fe2O3 parti- cles are highly dispersed on both MnO2 nanotubes and CNT surfaces, coupling all three components firmly. Electrochemical measurements indicate that the synergy of catalyst exhibit superior bi- functional catalytic activity for both oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) as well as stability than Pt/C and lrO2 catalysts. Using these catalysts for air-cathodes, both primary and rechargeable zinc-air batteries (ZABs) are assembled for performance validation. In a primary ZAB, this 3D-clamed catalyst shows a decent open circuit voltage (OCV, -1.48 V) and a high discharge peak power density (349 mW cm 2), corresponding to a coulomhic efficiency of 92%. In a rechargeahle ZABs with this bifunctional catalyst, high OCV (〉1.3 V) and small charge-discharge voltage gap (〈1.1 V) are achieved along with high specific capacity (780 mAh g 1 at 30 mA cm-2) and robust cycle-life (1,390 cycles at cycle profile of 20 mA/10 min).展开更多
基金supported by the Spanish Ministry of Economy and Competitiveness (Project CTQ2012-37925-C03-03)FEDER fundsby the Hungarian National Fund OTKA K109558
文摘Composites of carbon aerogel and graphite oxide(GO) were synthesized using a self-assembly method based on dispersive forces. Their surface was modified by treatment in hydrogen sulfide at 650 and800 ℃. The samples obtained were characterized by adsorption of nitrogen, TA-MS, XPS, potentiometric titration, and HRTEM and tested as catalysts for oxygen reduction reactions(ORR) in an alkaline medium.The synergistic effect of the composite(electrical conductivity, porosity and surface chemistry) leads to a good ORR catalytic activity. The onset potential for the composite of carbon aerogel heated at 800 ℃ is shifted to a more positive value and the number of electron transfer was 2e-at the potential 0.68 V versus RHE and it increased to 4e-with an increase in the negative values of the potential. An excellent tolerance to methanol crossover was also recorded.
基金supported by the National Natural Science Foundation of China(U1510120)Natural Science Foundation of Shanghai(14ZR1400700)+2 种基金the Project of Introducing Overseas Intelligence High Education of China(2017-2018)the Graduate Thesis Innovation Foundation of Donghua University(EG2017031,EG2016034)the College of Environmental Science and Engineering,State Environmental Protection Engineering Centre for Pollution Treatment and Control in Textile Industry,Donghua University
文摘Novel and highly durable air cathode electrocatalyst with three dimensional (3D)-clam-shaped structure, MnO2 nanotubes-supported Fe2O3 (Fe2O3/MnO2) composited by carbon nanotubes (CNTs) ((Fe2O3/ MnO2)3/4-(CNTs)1/4) is synthesized using a facile hydrothermal process and a following direct heat- treatment in the air. The morphology and composition of this catalyst are analyzed using scanning elec- tronic microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD) and energy dispersive X-ray spectroscopy (EDX). The morphology characteristics reveal that flower-like Fe2O3 parti- cles are highly dispersed on both MnO2 nanotubes and CNT surfaces, coupling all three components firmly. Electrochemical measurements indicate that the synergy of catalyst exhibit superior bi- functional catalytic activity for both oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) as well as stability than Pt/C and lrO2 catalysts. Using these catalysts for air-cathodes, both primary and rechargeable zinc-air batteries (ZABs) are assembled for performance validation. In a primary ZAB, this 3D-clamed catalyst shows a decent open circuit voltage (OCV, -1.48 V) and a high discharge peak power density (349 mW cm 2), corresponding to a coulomhic efficiency of 92%. In a rechargeahle ZABs with this bifunctional catalyst, high OCV (〉1.3 V) and small charge-discharge voltage gap (〈1.1 V) are achieved along with high specific capacity (780 mAh g 1 at 30 mA cm-2) and robust cycle-life (1,390 cycles at cycle profile of 20 mA/10 min).