The Stinger PDC cutter has high rock-breaking efficiency and excellent impact and wear resistance, which can significantly increase the rate of penetration (ROP) and extend PDC bit life for drilling hard and abrasive ...The Stinger PDC cutter has high rock-breaking efficiency and excellent impact and wear resistance, which can significantly increase the rate of penetration (ROP) and extend PDC bit life for drilling hard and abrasive formation. The knowledge of force response and mechanical specific energy (MSE) for the Stinger PDC cutter is of great importance for improving the cutter's performance and optimizing the hybrid PDC bit design. In this paper, 87 single cutter tests were conducted on the granite. A new method for precisely obtaining the rock broken volume was proposed. The influences of cutting depth, cutting angle, and cutting speed on cutting force and MSE were analyzed. Besides, a phenomenological cutting force model of the Stinger PDC cutter was established by regression of experimental data. Moreover, the surface topography and fracture morphology of the cutting groove and large size cuttings were measured by a 3D profilometer and a scanning electron microscope (SEM). Finally, the rock-breaking mechanism of the Stinger PDC cutter was illustrated. The results indicated that the cutting depth has the greatest influence on the cutting force and MSE, while the cutting speed has no obvious effects, especially at low cutting speeds. As the increase of cutting depth, the cutting force increases linearly, and MSE reduces with a quadratic polynomial relationship. When the cutting angle raises from 10° to 30°, the cutting force increases linearly, and the MSE firstly decreases and then increases. The optimal cutting angle for breaking rock is approximately 20°. The Stinger PDC cutter breaks granite mainly by high concentrated point loading and tensile failure, which can observably improve the rock breaking efficiency. The key findings of this work will help to reveal the rock-breaking mechanisms and optimize the cutter arrangement for the Stinger PDC cutter.展开更多
A prediction model for net cutting specific energy in computer numerical control(CNC)turning based on turning parameters and tool wear is developed.The model can predict the net cutting energy consumption before turni...A prediction model for net cutting specific energy in computer numerical control(CNC)turning based on turning parameters and tool wear is developed.The model can predict the net cutting energy consumption before turning.The prediction accuracy of the model is verified in AISI 1045 steel turning.The comparative experimental results show that the prediction accuracy of the model is significantly improved because the influence of tool wear is taken into account.Finally,the influences of turning parameters and tool wear on net cutting specific energy are studied.With the increase of cutting depth,the net cutting specific energy decreases.With the increase of spindle speed,the additional load loss power of spindle drive system increases,so the net cutting specific energy increases.The net cutting specific energy increases approximately linearly with tool wear.The results are helpful to formulate efficient and energy-saving CNC turning schemes and realize low‑carbon manufacturing.展开更多
This work aims at selecting optimal operating variables to obtain the minimum specific energy(SE) in sawing of rocks.A particular granite was sampled and sawn by a fully automated circular diamond sawblades.The periph...This work aims at selecting optimal operating variables to obtain the minimum specific energy(SE) in sawing of rocks.A particular granite was sampled and sawn by a fully automated circular diamond sawblades.The peripheral speed,the traverse speed,the cut depth and the flow rate of cooling fluid were selected as the operating variables.Taguchi approach was adopted as a statistical design of experimental technique for optimization studies.The results were evaluated based on the analysis of variance and signal-to-noise ratio(S/N ratio).Statistically significant operating variables and their percentage contribution to the process were also determined.Additionally,a statistical model was developed to demonstrate the relationship between SE and operating variables using regression analysis and the model was then verified.It was found that the optimal combination of operating variables for minimum SE is the peripheral speed of 25 m/s,the traverse speed of 70 cm/min,the cut depth of 2 cm and the flow rate of cooling fluid of 100 mL/s.The cut depth and traverse speed were statistically determined as the significant operating variables affecting the SE,respectively.Furthermore,the regression model results reveal that the predictive model has a high applicability for practical applications.展开更多
An overview of the developing survey, research actuality and the future development of high specific energy and power lithium sulfur rechargeable batteries was presented systemically. By introducing the character of s...An overview of the developing survey, research actuality and the future development of high specific energy and power lithium sulfur rechargeable batteries was presented systemically. By introducing the character of sulfur composite material and discussing some promising cathode materials, it may provide some foundation for people to go deep into researching and empoldering the sulfur composite material.展开更多
Theoretical minimum and actual specific energy consumptions (SEC) of typical manufacturing process (SMP) were studied. Firstly, a process division of a typical SMP in question was conducted with the theory of SEC ...Theoretical minimum and actual specific energy consumptions (SEC) of typical manufacturing process (SMP) were studied. Firstly, a process division of a typical SMP in question was conducted with the theory of SEC analysis. Secondly, an exergy analysis model of a subsystem consisting of several parallel processes and a SEC analysis model of SMP were developed. And finally, based on the analysis models, the SEC of SMP was analyzed by means of the statistical significance. The results show that the SEC of typical SMP comprises the theoretical minimum SEC and the additional SEC derived from the irreversibility~ and the SMP has a theoretical minimum SEC of 6.74 GJ/t and an additional SEC of 19.32 GJ/t, which account for 25.88% and 74.12% of the actual SEC, respectively.展开更多
This study systematically examines the energy dissipation mechanisms and ballistic characteristics of foam sandwich panels(FSP)under high-velocity impact using the explicit non-linear finite element method.Based on th...This study systematically examines the energy dissipation mechanisms and ballistic characteristics of foam sandwich panels(FSP)under high-velocity impact using the explicit non-linear finite element method.Based on the geometric topology of the FSP system,three FSP configurations with the same areal density are derived,namely multi-layer,gradient core and asymmetric face sheet,and three key structural parameters are identified:core thickness(t_(c)),face sheet thickness(t_(f))and overlap face/core number(n_(o)).The ballistic performance of the FSP system is comprehensively evaluated in terms of the ballistic limit velocity(BLV),deformation modes,energy dissipation mechanism,and specific penetration energy(SPE).The results show that the FSP system exhibits a significant configuration dependence,whose ballistic performance ranking is:asymmetric face sheet>gradient core>multi-layer.The mass distribution of the top and bottom face sheets plays a critical role in the ballistic resistance of the FSP system.Both BLV and SPE increase with tf,while the raising tcor noleads to an increase in BLV but a decrease in SPE.Further,a face-core synchronous enhancement mechanism is discovered by the energy dissipation analysis,based on which the ballistic optimization procedure is also conducted and a design chart is established.This study shed light on the anti-penetration mechanism of the FSP system and might provide a theoretical basis for its engineering application.展开更多
This paper brings the comparison of performances of CO_(2)conversion by plasma and plasma-assisted catalysis based on the data collected from literature in this field,organised in an open access online database.This t...This paper brings the comparison of performances of CO_(2)conversion by plasma and plasma-assisted catalysis based on the data collected from literature in this field,organised in an open access online database.This tool is open to all users to carry out their own analyses,but also to contributors who wish to add their data to the database in order to improve the relevance of the comparisons made,and ultimately to improve the efficiency of CO_(2)conversion by plasma-catalysis.The creation of this database and database user interface is motivated by the fact that plasma-catalysis is a fast-growing field for all CO_(2)conversion processes,be it methanation,dry reforming of methane,methanolisation,or others.As a result of this rapid increase,there is a need for a set of standard procedures to rigorously compare performances of different systems.However,this is currently not possible because the fundamental mechanisms of plasma-catalysis are still too poorly understood to define these standard procedures.Fortunately however,the accumulated data within the CO_(2)plasma-catalysis community has become large enough to warrant so-called“big data”studies more familiar in the fields of medicine and the social sciences.To enable comparisons between multiple data sets and make future research more effective,this work proposes the first database on CO_(2)conversion performances by plasma-catalysis open to the whole community.This database has been initiated in the framework of a H_(2)0_(2)0 European project and is called the“PIONEER Data Base”.The database gathers a large amount of CO_(2)conversion performance data such as conversion rate,energy efficiency,and selectivity for numerous plasma sources coupled with or without a catalyst.Each data set is associated with metadata describing the gas mixture,the plasma source,the nature of the catalyst,and the form of coupling with the plasma.Beyond the database itself,a data extraction tool with direct visualisation features or advanced filtering functionalities has been developed and is available online to the public.The simple and fast visualisation of the state of the art puts new results into context,identifies literal gaps in data,and consequently points towards promising research routes.More advanced data extraction illustrates the impact that the database can have in the understanding of plasma-catalyst coupling.Lessons learned from the review of a large amount of literature during the setup of the database lead to best practice advice to increase comparability between future CO_(2)plasma-catalytic studies.Finally,the community is strongly encouraged to contribute to the database not only to increase the visibility of their data but also the relevance of the comparisons allowed by this tool.展开更多
Specific energy consumption is an important indicatorfora better understanding of the machinability of materials.The present study aims to estimate the specific energy consumption for abrasive metal cutting with ultra...Specific energy consumption is an important indicatorfora better understanding of the machinability of materials.The present study aims to estimate the specific energy consumption for abrasive metal cutting with ultrathin discs at comparatively low and medium feed rates.Using an experimental technique,the cutting power was measured at four predefined feed rates for S235JR,intermetallic Fe-Al(40%),and C45K with different thermal treatments.The variation in the specific energy consumption with the material removal rate was analyzed through an empirical model,which enabled us to distinguish three phenomena of energy dissipation during material removal.The thermal treatment and mechanical properties of materials have a significant impact on the energy consumption pattern,its corresponding components,and cutting power.Ductile materials consume more specific cutting energy than brttle materials.The specific cutting energy is the minimum energy required to remove the material,and plowing energy is found to be the most significant phenomenon of energy dissipation.展开更多
Slurry pipeline transport is widely used in several industrial processes.Calculating the specific power consumption(SPC)and determining the best working conditions are important for the design and operation of transpo...Slurry pipeline transport is widely used in several industrial processes.Calculating the specific power consumption(SPC)and determining the best working conditions are important for the design and operation of transportation systems.Based on the Shanghai Jiao Tong University high-concentration multi-sized slurry pressure drop(SJTU-HMSPD)pipeline-resistance-calculation model,the SJTU-SPC model for calculating the power required to transport a unit volume of solid materials over a unit pipeline length is established for a slurry transport system.The said system demonstrates a uniformity coefficient in the 1.26–7.98 range,median particle size of 0.075–4 mm,particle volume concentration of 10–60%,and pipeline diameter of 0.203–0.8 m.The results obtained were successfully verified against existing experimental data.The influence of parameters,such as particle-gradation uniformity coefficient,median particle size,pipe diameter,and particle volume concentration,on the SPC were analysed.The results revealed that the greater is the uniformity coefficient,the smaller is the minimum specific energy consumption and the larger the optimal transport concentration for a constant,median particle size slurry.As observed,the optimal transport concentration for broad-graded sand equalled approximately 48%.These results supplement the conclusions of existing research,indicating that the optimal transport concentration is approximately 30%and provides theoretical support for high concentration transportation of broad graded slurry.展开更多
According to the misfitting dislocation theory,a method of theoretical calculation was devel- oped for the specific energy of the semicoherent interface between microalloy carbonitrides and austenite matrix.The calcul...According to the misfitting dislocation theory,a method of theoretical calculation was devel- oped for the specific energy of the semicoherent interface between microalloy carbonitrides and austenite matrix.The calculating formulae were derived and the results were satisfactorily applied on the research works.展开更多
Rotary ultrasonic drilling(RUD)has become an effective approach for machining advanced composites which are widely using in the field of aeronautics.The cutting kinematics and the corresponding material removal mechan...Rotary ultrasonic drilling(RUD)has become an effective approach for machining advanced composites which are widely using in the field of aeronautics.The cutting kinematics and the corresponding material removal mechanisms are distinct in different drilling areas during RUD.However,these fundamentals have not been fully considered in the existing studies.In this research,two distinct forms of interaction induced by ultrasonic vibration were considered as impact-separation and vibratory lapping between the abrasives and workpiece.And the conditions to guarantee the effectiveness of these interactions were obtained to eliminate diminishing effects of ultrasonic vibration.Based on indentation fracture theory,the penetration depth of abrasives and the axial drilling force model was derived for RUD.The verification tests of C/SiC composites resulted in a prediction error within 15%.Due to the minimal volume of material removed during each vibration cycle,the drilling force was more stable in vibration assisted mode.The specific drilling energy of RUD was firstly calculated based on the measured drilling load.It was found the drilling parameters should be matched with vibration frequency and amplitude to make better usage of the advantages of ultrasonic vibration,which is critical in the vibration assisted processing of advanced materials.展开更多
Improved energy utilisation,precision,and quality are critical in the current trend of low-carbon green manufactur-ing.In this study,three abrasive belts were prepared at various wear stages and characterised quantita...Improved energy utilisation,precision,and quality are critical in the current trend of low-carbon green manufactur-ing.In this study,three abrasive belts were prepared at various wear stages and characterised quantitatively.The effects of abrasive belt wear on the specific grinding energy partition were investigated by evaluating robotic belt grinding of titanium plates.A specific grinding energy model based on subdivided tangential forces of cutting and sliding was developed for investigating specific energy and energy utilisation coefficient EUC.The surface mor-phology and Abbott–Firestone curves of the belts were introduced to analyse the experimental findings from the per-spective of the micro cutting behaviour.The specific grinding energy increased with abrasive belt wear,especially when the belt was near the end of its life.Moreover,the belt wear could lead to a predominance change of sliding and chip formation energy.The highest EUC was observed in the middle of the belt life because of its retained sharp cutting edge and uniform distribution of the grit protrusion height.This study provides guidance for balancing the energy consumption and energy utilization efficiency of belt grinding.展开更多
Polymer matrix types of fiber hybrid composites are key factors to improve ballistic impact damage tolerances.Here we report ballistic penetration damages of Kevlar/ultra-high molecular weight polyethylene(UHMWPE)hybr...Polymer matrix types of fiber hybrid composites are key factors to improve ballistic impact damage tolerances.Here we report ballistic penetration damages of Kevlar/ultra-high molecular weight polyethylene(UHMWPE)hybrid composites with thermoplastic polyurethane(PU)matrix.The hybrid composites were penetrated by fragment-simulating projectiles(FSPs)using an air gun impact system.The effects of stacking sequences on the ballistic performance of hybrid composites were analyzed.Two types of specific energy absorption(the energy absorption per unit area density and the energy absorption per unit thickness)were investigated.It was found that the main damage modes of PU hybrid composites were fiber breakage,matrix damage,fiber pullout and interlayer delamination.The instantaneous deformation could not be used as a reference index for evaluating the ballistic performance of the target plate.The energy absorption process of the PU hybrid composites showed a nonlinear pattern.The hybrid structure affected the specific energy absorption of the materials.展开更多
Attempts to minimize energy consumption of a tunnel boring machine disc cutter during the process of fragmentation have largely focused on optimizing disc- cutter spacing, as determined by the minimum specific energy ...Attempts to minimize energy consumption of a tunnel boring machine disc cutter during the process of fragmentation have largely focused on optimizing disc- cutter spacing, as determined by the minimum specific energy required for fragmentation; however, indentation tests showed that rock deforms plastically beneath the cutters. Equations for thrust were developed for both the traditional, popularly employed disc cutter and anew design based on three-dimensional theory. The respective energy consumption for penetration, rolling, and side-slip fragmentations were obtained. A change in disc-cutter fragmentation angles resulted in a change in the nature of the interaction between the cutter and rock, which lowered the specific energy of fragmentation. During actual field excavations to the same penetration length, the combined energy consumption for fragmentation using the newly designed cutters was 15% lower than that when using the traditional design. This paper presents a theory for energy saving in tunnel boring machines. Investigation results showed that the disc cutters designed using this theory were more durable than traditional designs, and effectively lowered the energy consumption.展开更多
This study investigated the effect of repeated blasting on the stability of surrounding rock during the construction of a tunnel or city underground engineering.The split Hopkinson pressure bar(SHPB)was used to carry ...This study investigated the effect of repeated blasting on the stability of surrounding rock during the construction of a tunnel or city underground engineering.The split Hopkinson pressure bar(SHPB)was used to carry out cyclic impact tests on granite samples,each having a circular hole,under different axial pressures,and the cumulative specific energy was proposed to characterize the damage characteristics of the rock during the cyclic impact.The mechanical properties and the energy absorbed by the granite samples under cyclic impact loads were analyzed.The results showed that under different axial pressures,the reflected waveform from the samples was characterized by“double-peak”phenomenon,which gradually changed to“single-peak”wi th the increase in damage value.The dynamic peak stress of the sample first increased and then decreased with an increase in impact times.The damage value criterion established based on the energy dissipation could well characterize the relationship between the damage and the number of impacts,which showed a slow increase,steady increase,and high-speed increase,and the damage value depended mainly on the last impact.Under the action of different axial pressures,all the failure modes of the samples were axial splitting failures.As the strain rate increased,with an increase in the dimension of the block,the sizes of the rock fragments decreased,and the fragmentation became more severe.展开更多
The deformation behavior and crashworthiness of functionally-graded foam-filled tubes(FGFTs)under drop-weight impact loading were investigated.Closed cell aluminum,A356 alloy and zinc foams fabricated by the liquid st...The deformation behavior and crashworthiness of functionally-graded foam-filled tubes(FGFTs)under drop-weight impact loading were investigated.Closed cell aluminum,A356 alloy and zinc foams fabricated by the liquid state processing were used as axial grading fillers for the manufacture of single-layer and multilayer structures with different configurations.The results indicate that the deformation of multilayer foam filled tubes initiates from the low-strength components,and then propagates in the high-strength components through the gradual increment of stress.The use of more A356 alloy and aluminum foam layers provides greater specific energy absorption(SEA)for the graded structures,whereas the high-strength zinc foam has no positive effect on the crash performance.The progressive collapse of graded structures consisting of the aluminum and A356 alloy foams occurs in a symmetric mode under quasi-static and drop-weight impact conditions.However,the zinc foam causes a combination of symmetric and extension modes as well as greater localized deformation under dynamic loading and greater local rupture in quasi-static loading condition.The Al−A356 foam-filled tubes with a combination of the highest SEA(10 J/g)and the lowest initial peak stress(σmax of 10.2 MPa)are considered as the best lightweight crashworthy structures.展开更多
Energy consumption of block-cutting machines represents a major cost item in the processing of travertines and other natural stones. Therefore, determining the optimum sawing conditions for a particular stone is of ma...Energy consumption of block-cutting machines represents a major cost item in the processing of travertines and other natural stones. Therefore, determining the optimum sawing conditions for a particular stone is of major importance in the natural stone-processing industry. An experimental study was carried out utilizing a fully instrumented block-cutter to investigate the sawing performances of five different types of travertine blocks during cutting with a circular diamond saw. The sawing tests were performed in the down-cutting mode. Performance measurements were determined by measuring the cutting speed and energy consumption. Then, specific energy was determined. The one main cutting parameter, cutting speed, was varied in the investigation of optimum cutting performance. Furthermore, some physico-mechanical properties of file travertine blocks were determined in the laboratory. As a result, it is found that the energy consumption (specific energy) of block cutting machines is highly affected by cutting speed. It is determined that specific energy value usually decreases when cutting speed increases. When the cutting speed is higher than the determined value, the diamond saw can become stuck in the travertine block; this situation can be a problem for the block-cutting machine. As a result, the optimum cutting speed obtained for the travertine mines examined is approximately 1.5-2.0 m/min.展开更多
This study aims to introduce a novel hybrid design with a combination of two more common mechanisms for improving the capacity of systems in absorbing the kinetic energy of moving vehicles or devices. This new model c...This study aims to introduce a novel hybrid design with a combination of two more common mechanisms for improving the capacity of systems in absorbing the kinetic energy of moving vehicles or devices. This new model consists of two individual mechanisms, i.e., expansion of a circular tube accompanied by crushing of an inner tube, which dissipate the energy through friction, plastic deformations and failures of inner tube. This study comprises 24 case studies surveyed under two different design controls, constant mass and constant volume, for comparing purposes. Finite element simulations are utilized so as to investigate models’ deformations and to extract some crashworthiness parameters in aid of representing the efficiency of the mechanism as well as conducting a parametric study between three different profiles of inner tube. This study shows that models with inner circular and hexagonal tube profile absorb higher amount of energy due to experiencing three different modes of energy dissipation systems, including folding, shear and ductile damages.展开更多
Supercapacitors(SCs) are high-power energy storage devices with ultra-fast charge/discharge properties.SCs using concentrated aqueous-based electrolytes can work at low temperatures due to their intrinsic properties, ...Supercapacitors(SCs) are high-power energy storage devices with ultra-fast charge/discharge properties.SCs using concentrated aqueous-based electrolytes can work at low temperatures due to their intrinsic properties, such as higher freezing point depression(FPD) and robustness. Besides the traditional organic-and aqueous-based(salt-in-water) electrolytes used in SCs, water-in-salt(WISE) sodium perchlorate electrolytes offer high FPD, non-flammability, and low-toxicity conditions, allowing the fabrication of safer, environmentally friendly, and more robust devices. For the first time, this work reports a comprehensive study regarding WISE system’s charge-storage capabilities and physicochemical properties under low-temperature conditions(T < 0 ℃) using mesoporous carbon-based electrodes. The effect of temperature reduction on the electrolyte viscosity and electrical properties was investigated using different techniques and the in-situ(or operando) Raman spectroscopy under dynamic polarization conditions.The cell voltage, equivalent series resistance, and specific capacitance were investigated as a function of the temperature. The cell voltage(U) increased ~ 50%, while the specific capacitance decreased ~20%when the temperature was reduced from 25 ℃ to -10 ℃. As a result, the maximum specific energy(E = CU^(2)/2) increased ~ 100%. Therefore, low-temperature WISEs are promising candidates to improve the energy-storage characteristics in SCs.展开更多
Bymeans of the local surface nanocrystallization that enables to change the material on local positions,an innovative embedded multi-cell(EMC)thin-walled energy absorption structures with local surface nanocrystalliza...Bymeans of the local surface nanocrystallization that enables to change the material on local positions,an innovative embedded multi-cell(EMC)thin-walled energy absorption structures with local surface nanocrystallization is proposed in this paper.The local surface nanacrystallization stripes are regarded as the moving morphable components in the domain for optimal design.Results reveal that after optimizing the local surface nanocrystallization layout,the specific energy absorption(SEA)is increased by 50.78%compared with the untreated counterpart.Besides,in contrast with the optimized 4-cell structure,the SEA of the nanocrystallized embedded 9-cell structure is further enhanced by 27.68%,in contrast with the 9-cell structure,the SEA of the nanocrystallized embedded clapboard type 9-cell structure is enhanced by 3.61%.Thismethod provides a guidance for the design of newenergy absorption devices.展开更多
基金supported by the Joint Funds of The National Natural Science Foundation of China(Grant No.U19B6003-05)the National Key Research and Development Program of China(No.2019YFA0708302)+2 种基金the National Science Fund for Distinguished Young Scholars(Grant No.51725404)the Beijing Outstanding Young Scientist Program(Grant No.BJJWZYJH01201911414038)the Strategic Cooperation Technology Projects of CNPC and CUPB(Grant No.ZLZX2020-01).
文摘The Stinger PDC cutter has high rock-breaking efficiency and excellent impact and wear resistance, which can significantly increase the rate of penetration (ROP) and extend PDC bit life for drilling hard and abrasive formation. The knowledge of force response and mechanical specific energy (MSE) for the Stinger PDC cutter is of great importance for improving the cutter's performance and optimizing the hybrid PDC bit design. In this paper, 87 single cutter tests were conducted on the granite. A new method for precisely obtaining the rock broken volume was proposed. The influences of cutting depth, cutting angle, and cutting speed on cutting force and MSE were analyzed. Besides, a phenomenological cutting force model of the Stinger PDC cutter was established by regression of experimental data. Moreover, the surface topography and fracture morphology of the cutting groove and large size cuttings were measured by a 3D profilometer and a scanning electron microscope (SEM). Finally, the rock-breaking mechanism of the Stinger PDC cutter was illustrated. The results indicated that the cutting depth has the greatest influence on the cutting force and MSE, while the cutting speed has no obvious effects, especially at low cutting speeds. As the increase of cutting depth, the cutting force increases linearly, and MSE reduces with a quadratic polynomial relationship. When the cutting angle raises from 10° to 30°, the cutting force increases linearly, and the MSE firstly decreases and then increases. The optimal cutting angle for breaking rock is approximately 20°. The Stinger PDC cutter breaks granite mainly by high concentrated point loading and tensile failure, which can observably improve the rock breaking efficiency. The key findings of this work will help to reveal the rock-breaking mechanisms and optimize the cutter arrangement for the Stinger PDC cutter.
基金supported by the Project of Shandong Province Natural Science Foundation of China (No. ZR2016EEM29)the Project of Shandong Province Key Research Development of China (No.2017GGX30114)。
文摘A prediction model for net cutting specific energy in computer numerical control(CNC)turning based on turning parameters and tool wear is developed.The model can predict the net cutting energy consumption before turning.The prediction accuracy of the model is verified in AISI 1045 steel turning.The comparative experimental results show that the prediction accuracy of the model is significantly improved because the influence of tool wear is taken into account.Finally,the influences of turning parameters and tool wear on net cutting specific energy are studied.With the increase of cutting depth,the net cutting specific energy decreases.With the increase of spindle speed,the additional load loss power of spindle drive system increases,so the net cutting specific energy increases.The net cutting specific energy increases approximately linearly with tool wear.The results are helpful to formulate efficient and energy-saving CNC turning schemes and realize low‑carbon manufacturing.
文摘This work aims at selecting optimal operating variables to obtain the minimum specific energy(SE) in sawing of rocks.A particular granite was sampled and sawn by a fully automated circular diamond sawblades.The peripheral speed,the traverse speed,the cut depth and the flow rate of cooling fluid were selected as the operating variables.Taguchi approach was adopted as a statistical design of experimental technique for optimization studies.The results were evaluated based on the analysis of variance and signal-to-noise ratio(S/N ratio).Statistically significant operating variables and their percentage contribution to the process were also determined.Additionally,a statistical model was developed to demonstrate the relationship between SE and operating variables using regression analysis and the model was then verified.It was found that the optimal combination of operating variables for minimum SE is the peripheral speed of 25 m/s,the traverse speed of 70 cm/min,the cut depth of 2 cm and the flow rate of cooling fluid of 100 mL/s.The cut depth and traverse speed were statistically determined as the significant operating variables affecting the SE,respectively.Furthermore,the regression model results reveal that the predictive model has a high applicability for practical applications.
文摘An overview of the developing survey, research actuality and the future development of high specific energy and power lithium sulfur rechargeable batteries was presented systemically. By introducing the character of sulfur composite material and discussing some promising cathode materials, it may provide some foundation for people to go deep into researching and empoldering the sulfur composite material.
基金Item Sponsored by Fundamental Research Funds for the Central Universities of China(N090602007)National Key Technology Research and Development Program in 11th Five-Year Plan Project of China(2006BAE03A09)
文摘Theoretical minimum and actual specific energy consumptions (SEC) of typical manufacturing process (SMP) were studied. Firstly, a process division of a typical SMP in question was conducted with the theory of SEC analysis. Secondly, an exergy analysis model of a subsystem consisting of several parallel processes and a SEC analysis model of SMP were developed. And finally, based on the analysis models, the SEC of SMP was analyzed by means of the statistical significance. The results show that the SEC of typical SMP comprises the theoretical minimum SEC and the additional SEC derived from the irreversibility~ and the SMP has a theoretical minimum SEC of 6.74 GJ/t and an additional SEC of 19.32 GJ/t, which account for 25.88% and 74.12% of the actual SEC, respectively.
基金the National Natural Science Foundation of China(Grant Nos.11972096,12372127 and 12202085)the Fundamental Research Funds for the Central Universities(Grant No.2022CDJQY004)+4 种基金Chongqing Natural Science Foundation(Grant No.cstc2021ycjh-bgzxm0117)China Postdoctoral Science Foundation(Grant No.2022M720562)Chongqing Postdoctoral Science Foundation(Grant No.2021XM3022)supported by the opening project of State Key Laboratory of Explosion Science and Technology(Beijing Institute of Technology)The opening project number is KFJJ23-18 M。
文摘This study systematically examines the energy dissipation mechanisms and ballistic characteristics of foam sandwich panels(FSP)under high-velocity impact using the explicit non-linear finite element method.Based on the geometric topology of the FSP system,three FSP configurations with the same areal density are derived,namely multi-layer,gradient core and asymmetric face sheet,and three key structural parameters are identified:core thickness(t_(c)),face sheet thickness(t_(f))and overlap face/core number(n_(o)).The ballistic performance of the FSP system is comprehensively evaluated in terms of the ballistic limit velocity(BLV),deformation modes,energy dissipation mechanism,and specific penetration energy(SPE).The results show that the FSP system exhibits a significant configuration dependence,whose ballistic performance ranking is:asymmetric face sheet>gradient core>multi-layer.The mass distribution of the top and bottom face sheets plays a critical role in the ballistic resistance of the FSP system.Both BLV and SPE increase with tf,while the raising tcor noleads to an increase in BLV but a decrease in SPE.Further,a face-core synchronous enhancement mechanism is discovered by the energy dissipation analysis,based on which the ballistic optimization procedure is also conducted and a design chart is established.This study shed light on the anti-penetration mechanism of the FSP system and might provide a theoretical basis for its engineering application.
基金funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No.813393partially funded by the Portuguese FCT-Funda??o para a Ciência e a Tecnologia,under projects UIDB/50010/2020,UIDP/50010/2020 and PTDC/FIS-PLA/1616/2021。
文摘This paper brings the comparison of performances of CO_(2)conversion by plasma and plasma-assisted catalysis based on the data collected from literature in this field,organised in an open access online database.This tool is open to all users to carry out their own analyses,but also to contributors who wish to add their data to the database in order to improve the relevance of the comparisons made,and ultimately to improve the efficiency of CO_(2)conversion by plasma-catalysis.The creation of this database and database user interface is motivated by the fact that plasma-catalysis is a fast-growing field for all CO_(2)conversion processes,be it methanation,dry reforming of methane,methanolisation,or others.As a result of this rapid increase,there is a need for a set of standard procedures to rigorously compare performances of different systems.However,this is currently not possible because the fundamental mechanisms of plasma-catalysis are still too poorly understood to define these standard procedures.Fortunately however,the accumulated data within the CO_(2)plasma-catalysis community has become large enough to warrant so-called“big data”studies more familiar in the fields of medicine and the social sciences.To enable comparisons between multiple data sets and make future research more effective,this work proposes the first database on CO_(2)conversion performances by plasma-catalysis open to the whole community.This database has been initiated in the framework of a H_(2)0_(2)0 European project and is called the“PIONEER Data Base”.The database gathers a large amount of CO_(2)conversion performance data such as conversion rate,energy efficiency,and selectivity for numerous plasma sources coupled with or without a catalyst.Each data set is associated with metadata describing the gas mixture,the plasma source,the nature of the catalyst,and the form of coupling with the plasma.Beyond the database itself,a data extraction tool with direct visualisation features or advanced filtering functionalities has been developed and is available online to the public.The simple and fast visualisation of the state of the art puts new results into context,identifies literal gaps in data,and consequently points towards promising research routes.More advanced data extraction illustrates the impact that the database can have in the understanding of plasma-catalyst coupling.Lessons learned from the review of a large amount of literature during the setup of the database lead to best practice advice to increase comparability between future CO_(2)plasma-catalytic studies.Finally,the community is strongly encouraged to contribute to the database not only to increase the visibility of their data but also the relevance of the comparisons allowed by this tool.
文摘Specific energy consumption is an important indicatorfora better understanding of the machinability of materials.The present study aims to estimate the specific energy consumption for abrasive metal cutting with ultrathin discs at comparatively low and medium feed rates.Using an experimental technique,the cutting power was measured at four predefined feed rates for S235JR,intermetallic Fe-Al(40%),and C45K with different thermal treatments.The variation in the specific energy consumption with the material removal rate was analyzed through an empirical model,which enabled us to distinguish three phenomena of energy dissipation during material removal.The thermal treatment and mechanical properties of materials have a significant impact on the energy consumption pattern,its corresponding components,and cutting power.Ductile materials consume more specific cutting energy than brttle materials.The specific cutting energy is the minimum energy required to remove the material,and plowing energy is found to be the most significant phenomenon of energy dissipation.
基金This research was supported by the National Natural Science Foundation of China(Grant No.51779143)the Cultivation of Scientific Research Ability of Young Talents of Shanghai jiao Tong University(Grant No.19×100040072).
文摘Slurry pipeline transport is widely used in several industrial processes.Calculating the specific power consumption(SPC)and determining the best working conditions are important for the design and operation of transportation systems.Based on the Shanghai Jiao Tong University high-concentration multi-sized slurry pressure drop(SJTU-HMSPD)pipeline-resistance-calculation model,the SJTU-SPC model for calculating the power required to transport a unit volume of solid materials over a unit pipeline length is established for a slurry transport system.The said system demonstrates a uniformity coefficient in the 1.26–7.98 range,median particle size of 0.075–4 mm,particle volume concentration of 10–60%,and pipeline diameter of 0.203–0.8 m.The results obtained were successfully verified against existing experimental data.The influence of parameters,such as particle-gradation uniformity coefficient,median particle size,pipe diameter,and particle volume concentration,on the SPC were analysed.The results revealed that the greater is the uniformity coefficient,the smaller is the minimum specific energy consumption and the larger the optimal transport concentration for a constant,median particle size slurry.As observed,the optimal transport concentration for broad-graded sand equalled approximately 48%.These results supplement the conclusions of existing research,indicating that the optimal transport concentration is approximately 30%and provides theoretical support for high concentration transportation of broad graded slurry.
文摘According to the misfitting dislocation theory,a method of theoretical calculation was devel- oped for the specific energy of the semicoherent interface between microalloy carbonitrides and austenite matrix.The calculating formulae were derived and the results were satisfactorily applied on the research works.
基金supported by the National Natural Science Foundation of China(No.U1737201)the National Science and Technology Major Project(No.2017-VII-0015-0111)+1 种基金the Key Basic and Applied Research Program of Guangdong Province,China(No.2019B030302010)the Science and Technology Innovation Commission Shenzhen(No.JCYJ20170412111216258).
文摘Rotary ultrasonic drilling(RUD)has become an effective approach for machining advanced composites which are widely using in the field of aeronautics.The cutting kinematics and the corresponding material removal mechanisms are distinct in different drilling areas during RUD.However,these fundamentals have not been fully considered in the existing studies.In this research,two distinct forms of interaction induced by ultrasonic vibration were considered as impact-separation and vibratory lapping between the abrasives and workpiece.And the conditions to guarantee the effectiveness of these interactions were obtained to eliminate diminishing effects of ultrasonic vibration.Based on indentation fracture theory,the penetration depth of abrasives and the axial drilling force model was derived for RUD.The verification tests of C/SiC composites resulted in a prediction error within 15%.Due to the minimal volume of material removed during each vibration cycle,the drilling force was more stable in vibration assisted mode.The specific drilling energy of RUD was firstly calculated based on the measured drilling load.It was found the drilling parameters should be matched with vibration frequency and amplitude to make better usage of the advantages of ultrasonic vibration,which is critical in the vibration assisted processing of advanced materials.
基金Supported by National Natural Science Foundation of China(Grant No.52105430)China Postdoctoral Science Foundation(Grant No.2020M673126)Chongqing Municipal Natural Science Foundation of China(Grant No.cstc2020jcyj-msxmX0266).
文摘Improved energy utilisation,precision,and quality are critical in the current trend of low-carbon green manufactur-ing.In this study,three abrasive belts were prepared at various wear stages and characterised quantitatively.The effects of abrasive belt wear on the specific grinding energy partition were investigated by evaluating robotic belt grinding of titanium plates.A specific grinding energy model based on subdivided tangential forces of cutting and sliding was developed for investigating specific energy and energy utilisation coefficient EUC.The surface mor-phology and Abbott–Firestone curves of the belts were introduced to analyse the experimental findings from the per-spective of the micro cutting behaviour.The specific grinding energy increased with abrasive belt wear,especially when the belt was near the end of its life.Moreover,the belt wear could lead to a predominance change of sliding and chip formation energy.The highest EUC was observed in the middle of the belt life because of its retained sharp cutting edge and uniform distribution of the grit protrusion height.This study provides guidance for balancing the energy consumption and energy utilization efficiency of belt grinding.
基金National Natural Science Foundation of China(No.51875099)。
文摘Polymer matrix types of fiber hybrid composites are key factors to improve ballistic impact damage tolerances.Here we report ballistic penetration damages of Kevlar/ultra-high molecular weight polyethylene(UHMWPE)hybrid composites with thermoplastic polyurethane(PU)matrix.The hybrid composites were penetrated by fragment-simulating projectiles(FSPs)using an air gun impact system.The effects of stacking sequences on the ballistic performance of hybrid composites were analyzed.Two types of specific energy absorption(the energy absorption per unit area density and the energy absorption per unit thickness)were investigated.It was found that the main damage modes of PU hybrid composites were fiber breakage,matrix damage,fiber pullout and interlayer delamination.The instantaneous deformation could not be used as a reference index for evaluating the ballistic performance of the target plate.The energy absorption process of the PU hybrid composites showed a nonlinear pattern.The hybrid structure affected the specific energy absorption of the materials.
基金Supported by National Natural Science Foundation of China(Grant No.51475163)National Hi-tech Research and Development Program of China(863 Program,Grant No.2012AA041803)
文摘Attempts to minimize energy consumption of a tunnel boring machine disc cutter during the process of fragmentation have largely focused on optimizing disc- cutter spacing, as determined by the minimum specific energy required for fragmentation; however, indentation tests showed that rock deforms plastically beneath the cutters. Equations for thrust were developed for both the traditional, popularly employed disc cutter and anew design based on three-dimensional theory. The respective energy consumption for penetration, rolling, and side-slip fragmentations were obtained. A change in disc-cutter fragmentation angles resulted in a change in the nature of the interaction between the cutter and rock, which lowered the specific energy of fragmentation. During actual field excavations to the same penetration length, the combined energy consumption for fragmentation using the newly designed cutters was 15% lower than that when using the traditional design. This paper presents a theory for energy saving in tunnel boring machines. Investigation results showed that the disc cutters designed using this theory were more durable than traditional designs, and effectively lowered the energy consumption.
基金Projects(51804163,52004130)supported by the National Natural Science Foundation of ChinaProject(2018 M 642678)supported by the China Postdoctoral Science Foundation。
文摘This study investigated the effect of repeated blasting on the stability of surrounding rock during the construction of a tunnel or city underground engineering.The split Hopkinson pressure bar(SHPB)was used to carry out cyclic impact tests on granite samples,each having a circular hole,under different axial pressures,and the cumulative specific energy was proposed to characterize the damage characteristics of the rock during the cyclic impact.The mechanical properties and the energy absorbed by the granite samples under cyclic impact loads were analyzed.The results showed that under different axial pressures,the reflected waveform from the samples was characterized by“double-peak”phenomenon,which gradually changed to“single-peak”wi th the increase in damage value.The dynamic peak stress of the sample first increased and then decreased with an increase in impact times.The damage value criterion established based on the energy dissipation could well characterize the relationship between the damage and the number of impacts,which showed a slow increase,steady increase,and high-speed increase,and the damage value depended mainly on the last impact.Under the action of different axial pressures,all the failure modes of the samples were axial splitting failures.As the strain rate increased,with an increase in the dimension of the block,the sizes of the rock fragments decreased,and the fragmentation became more severe.
基金This work was supported by the Metal Foam Group of Amirkabir University(MFGAU)through Grant No.110-mir-13990531.The authors are grateful to Nowin Rahyaft Advanced Sciences and Technologies Knowledge Based Company for their support in casting and cutting the metal foams.
文摘The deformation behavior and crashworthiness of functionally-graded foam-filled tubes(FGFTs)under drop-weight impact loading were investigated.Closed cell aluminum,A356 alloy and zinc foams fabricated by the liquid state processing were used as axial grading fillers for the manufacture of single-layer and multilayer structures with different configurations.The results indicate that the deformation of multilayer foam filled tubes initiates from the low-strength components,and then propagates in the high-strength components through the gradual increment of stress.The use of more A356 alloy and aluminum foam layers provides greater specific energy absorption(SEA)for the graded structures,whereas the high-strength zinc foam has no positive effect on the crash performance.The progressive collapse of graded structures consisting of the aluminum and A356 alloy foams occurs in a symmetric mode under quasi-static and drop-weight impact conditions.However,the zinc foam causes a combination of symmetric and extension modes as well as greater localized deformation under dynamic loading and greater local rupture in quasi-static loading condition.The Al−A356 foam-filled tubes with a combination of the highest SEA(10 J/g)and the lowest initial peak stress(σmax of 10.2 MPa)are considered as the best lightweight crashworthy structures.
文摘Energy consumption of block-cutting machines represents a major cost item in the processing of travertines and other natural stones. Therefore, determining the optimum sawing conditions for a particular stone is of major importance in the natural stone-processing industry. An experimental study was carried out utilizing a fully instrumented block-cutter to investigate the sawing performances of five different types of travertine blocks during cutting with a circular diamond saw. The sawing tests were performed in the down-cutting mode. Performance measurements were determined by measuring the cutting speed and energy consumption. Then, specific energy was determined. The one main cutting parameter, cutting speed, was varied in the investigation of optimum cutting performance. Furthermore, some physico-mechanical properties of file travertine blocks were determined in the laboratory. As a result, it is found that the energy consumption (specific energy) of block cutting machines is highly affected by cutting speed. It is determined that specific energy value usually decreases when cutting speed increases. When the cutting speed is higher than the determined value, the diamond saw can become stuck in the travertine block; this situation can be a problem for the block-cutting machine. As a result, the optimum cutting speed obtained for the travertine mines examined is approximately 1.5-2.0 m/min.
文摘This study aims to introduce a novel hybrid design with a combination of two more common mechanisms for improving the capacity of systems in absorbing the kinetic energy of moving vehicles or devices. This new model consists of two individual mechanisms, i.e., expansion of a circular tube accompanied by crushing of an inner tube, which dissipate the energy through friction, plastic deformations and failures of inner tube. This study comprises 24 case studies surveyed under two different design controls, constant mass and constant volume, for comparing purposes. Finite element simulations are utilized so as to investigate models’ deformations and to extract some crashworthiness parameters in aid of representing the efficiency of the mechanism as well as conducting a parametric study between three different profiles of inner tube. This study shows that models with inner circular and hexagonal tube profile absorb higher amount of energy due to experiencing three different modes of energy dissipation systems, including folding, shear and ductile damages.
基金the financial support from the Brazilian funding agencies CNPq(310544/2019-0),FAPESP(2014/02163-7&2017/11958-1)FAPEMIG(Financial support for the LMMA/UFVJM Laboratory)and CNPq(PQ-2 grant:Process 301095/2018-3)the support from Shell and the strategic importance of the support given by ANP(Brazil’s National Oil,Natural Gas,and Biofuels Agency)through the R&D levy regulation。
文摘Supercapacitors(SCs) are high-power energy storage devices with ultra-fast charge/discharge properties.SCs using concentrated aqueous-based electrolytes can work at low temperatures due to their intrinsic properties, such as higher freezing point depression(FPD) and robustness. Besides the traditional organic-and aqueous-based(salt-in-water) electrolytes used in SCs, water-in-salt(WISE) sodium perchlorate electrolytes offer high FPD, non-flammability, and low-toxicity conditions, allowing the fabrication of safer, environmentally friendly, and more robust devices. For the first time, this work reports a comprehensive study regarding WISE system’s charge-storage capabilities and physicochemical properties under low-temperature conditions(T < 0 ℃) using mesoporous carbon-based electrodes. The effect of temperature reduction on the electrolyte viscosity and electrical properties was investigated using different techniques and the in-situ(or operando) Raman spectroscopy under dynamic polarization conditions.The cell voltage, equivalent series resistance, and specific capacitance were investigated as a function of the temperature. The cell voltage(U) increased ~ 50%, while the specific capacitance decreased ~20%when the temperature was reduced from 25 ℃ to -10 ℃. As a result, the maximum specific energy(E = CU^(2)/2) increased ~ 100%. Therefore, low-temperature WISEs are promising candidates to improve the energy-storage characteristics in SCs.
基金Dalian Innovation Foundation of Science and Technology(2018J11CY005)State Key Laboratory of Structural Analysis for Industrial Equipment(S18313)are gratefully acknowledged.
文摘Bymeans of the local surface nanocrystallization that enables to change the material on local positions,an innovative embedded multi-cell(EMC)thin-walled energy absorption structures with local surface nanocrystallization is proposed in this paper.The local surface nanacrystallization stripes are regarded as the moving morphable components in the domain for optimal design.Results reveal that after optimizing the local surface nanocrystallization layout,the specific energy absorption(SEA)is increased by 50.78%compared with the untreated counterpart.Besides,in contrast with the optimized 4-cell structure,the SEA of the nanocrystallized embedded 9-cell structure is further enhanced by 27.68%,in contrast with the 9-cell structure,the SEA of the nanocrystallized embedded clapboard type 9-cell structure is enhanced by 3.61%.Thismethod provides a guidance for the design of newenergy absorption devices.