The deformation behavior and crashworthiness of functionally-graded foam-filled tubes(FGFTs)under drop-weight impact loading were investigated.Closed cell aluminum,A356 alloy and zinc foams fabricated by the liquid st...The deformation behavior and crashworthiness of functionally-graded foam-filled tubes(FGFTs)under drop-weight impact loading were investigated.Closed cell aluminum,A356 alloy and zinc foams fabricated by the liquid state processing were used as axial grading fillers for the manufacture of single-layer and multilayer structures with different configurations.The results indicate that the deformation of multilayer foam filled tubes initiates from the low-strength components,and then propagates in the high-strength components through the gradual increment of stress.The use of more A356 alloy and aluminum foam layers provides greater specific energy absorption(SEA)for the graded structures,whereas the high-strength zinc foam has no positive effect on the crash performance.The progressive collapse of graded structures consisting of the aluminum and A356 alloy foams occurs in a symmetric mode under quasi-static and drop-weight impact conditions.However,the zinc foam causes a combination of symmetric and extension modes as well as greater localized deformation under dynamic loading and greater local rupture in quasi-static loading condition.The Al−A356 foam-filled tubes with a combination of the highest SEA(10 J/g)and the lowest initial peak stress(σmax of 10.2 MPa)are considered as the best lightweight crashworthy structures.展开更多
This study aims to introduce a novel hybrid design with a combination of two more common mechanisms for improving the capacity of systems in absorbing the kinetic energy of moving vehicles or devices. This new model c...This study aims to introduce a novel hybrid design with a combination of two more common mechanisms for improving the capacity of systems in absorbing the kinetic energy of moving vehicles or devices. This new model consists of two individual mechanisms, i.e., expansion of a circular tube accompanied by crushing of an inner tube, which dissipate the energy through friction, plastic deformations and failures of inner tube. This study comprises 24 case studies surveyed under two different design controls, constant mass and constant volume, for comparing purposes. Finite element simulations are utilized so as to investigate models’ deformations and to extract some crashworthiness parameters in aid of representing the efficiency of the mechanism as well as conducting a parametric study between three different profiles of inner tube. This study shows that models with inner circular and hexagonal tube profile absorb higher amount of energy due to experiencing three different modes of energy dissipation systems, including folding, shear and ductile damages.展开更多
The problems of EM energy absorption of human body irradiated by plane wave arediscussed by the Finite-Difference Time-Domain(FD-TD)method.The local Specific AbsorptionRates(SARs),the whole-body average SARs and the l...The problems of EM energy absorption of human body irradiated by plane wave arediscussed by the Finite-Difference Time-Domain(FD-TD)method.The local Specific AbsorptionRates(SARs),the whole-body average SARs and the layer average SARs for the inhomogeneousblock model of human body with different incident direction and different polarization of theincident waves are calculated.The results show that the appearance of maximum EM energyabsorption is not always at the situation of the front incidence and the local SARs are moreimportant for the interaction of the EM fields with human body.All results provide more infor-mation about the electromagnetic dosimetry for human body.展开更多
Bymeans of the local surface nanocrystallization that enables to change the material on local positions,an innovative embedded multi-cell(EMC)thin-walled energy absorption structures with local surface nanocrystalliza...Bymeans of the local surface nanocrystallization that enables to change the material on local positions,an innovative embedded multi-cell(EMC)thin-walled energy absorption structures with local surface nanocrystallization is proposed in this paper.The local surface nanacrystallization stripes are regarded as the moving morphable components in the domain for optimal design.Results reveal that after optimizing the local surface nanocrystallization layout,the specific energy absorption(SEA)is increased by 50.78%compared with the untreated counterpart.Besides,in contrast with the optimized 4-cell structure,the SEA of the nanocrystallized embedded 9-cell structure is further enhanced by 27.68%,in contrast with the 9-cell structure,the SEA of the nanocrystallized embedded clapboard type 9-cell structure is enhanced by 3.61%.Thismethod provides a guidance for the design of newenergy absorption devices.展开更多
This paper utilized the compressive tests results to establish some critical mechanical properties and crashworthiness parameters that may be required to design GRP composites of polyester matrix in automobile structu...This paper utilized the compressive tests results to establish some critical mechanical properties and crashworthiness parameters that may be required to design GRP composites of polyester matrix in automobile structures. Third order polynomial function was used with numerical methods to establish the elastic properties whish could not be established due to sensitivity of the Monsanto tensometer used to obtain the compression results. This study showed that the finite difference method captured the general trend of experimental solution giving optimum value of compressive stress as 23.78MPa at strain of 0.018 and elastic limit of 12.01MPa at 0.01 strain through finite difference analysis while the solution with third order polynomial interpolation gave optimum compressive stress as 36.57MPa at 0.018 strain and elastic limit of 12.143MPa. Also established with compression data is the compressive or buckling moduli of 1.2GPa. Gauss-Legendre two point rule was used to evaluate the area under the stress-strain curve which measured the amount of energy absorbed per unit volume of sample from where the energy absorbed at ultimate strength of 0.025J/M3- 0.22 J/M3 , energy at fracture of 0.62 J/M3- 1.62 J/M3 and the absorbed specific work 0.001J/Kg are established.展开更多
Polymer matrix types of fiber hybrid composites are key factors to improve ballistic impact damage tolerances.Here we report ballistic penetration damages of Kevlar/ultra-high molecular weight polyethylene(UHMWPE)hybr...Polymer matrix types of fiber hybrid composites are key factors to improve ballistic impact damage tolerances.Here we report ballistic penetration damages of Kevlar/ultra-high molecular weight polyethylene(UHMWPE)hybrid composites with thermoplastic polyurethane(PU)matrix.The hybrid composites were penetrated by fragment-simulating projectiles(FSPs)using an air gun impact system.The effects of stacking sequences on the ballistic performance of hybrid composites were analyzed.Two types of specific energy absorption(the energy absorption per unit area density and the energy absorption per unit thickness)were investigated.It was found that the main damage modes of PU hybrid composites were fiber breakage,matrix damage,fiber pullout and interlayer delamination.The instantaneous deformation could not be used as a reference index for evaluating the ballistic performance of the target plate.The energy absorption process of the PU hybrid composites showed a nonlinear pattern.The hybrid structure affected the specific energy absorption of the materials.展开更多
Light-weight,high-strength metamaterials with excellent specific energy absorption(SEA)capabilities are sig-nificant for aerospace and automobile.The SEA of metamaterials largely depends on the material and structural...Light-weight,high-strength metamaterials with excellent specific energy absorption(SEA)capabilities are sig-nificant for aerospace and automobile.The SEA of metamaterials largely depends on the material and structural design.Herein,inspired by the superior impact resistance of pomelo peel for protecting the pulp and the elevated SEA ability of a functionally graded structure,a graded bionic polyhedron metamaterial(GBPM)was designed and realized by 3D printing using a soft material(photosensitive resin)and a hard material(Ti-6Al-4V).Guided by compression tests and numerical simulations,the elevated SEA ability was independent of the materials.The fluctuation region appeared in hard-material-fabricated bionic polyhedron metamaterial(BPMs)and was absent in soft-material-fabricated BPMs in the stress-strain curves,resulting in the growth rate of the SEA value of the soft-material-fabricated GBPM being enhanced by 5.9 times compared with that of the hard-material-fabricated GBPM.The SEA values of soft-and hard-material-fabricated GBPM were 1.89 and 44.16 J/g,which exceed those of most soft-and hard-material-fabricated metamaterials reported in previous studies.These findings can guide the design of metamaterials with high energy absorption to resist external impacts.展开更多
Functionally Graded Concrete (FGC) is fabricated at the Institute for Lightweight Structures and Conceptual Design (ILEK) by using a layer-by-layer technique with two different technological procedures: casting a...Functionally Graded Concrete (FGC) is fabricated at the Institute for Lightweight Structures and Conceptual Design (ILEK) by using a layer-by-layer technique with two different technological procedures: casting and dry spraying. Functional gradations are developed from two reference mixtures with diametrically opposed characteristics in terms of density, porosity, compression strength and elasticity modulus. In this study the first mixture consists of Normal Density Concrete (NDC), with density about 2160 kg·m^-3 while the second mixture helps to obtain a very lightweight concrete, with density about 830 kg·m^-3. The FGC specimens have layers with different alternating porosities and provide superior deformability capacity under bulk compression compared to NDC specimens. In addition, the FGC specimens experienced a graceful failure behaviour, absorbing high amounts of energy during extended compression paths. The porosity variation inside the layout of tested specimens is inspired by the internal structure of sea urchin spines of heterocentrotus mammillatus, a promising role model for energy absorption in biomimetic engineering.展开更多
基金This work was supported by the Metal Foam Group of Amirkabir University(MFGAU)through Grant No.110-mir-13990531.The authors are grateful to Nowin Rahyaft Advanced Sciences and Technologies Knowledge Based Company for their support in casting and cutting the metal foams.
文摘The deformation behavior and crashworthiness of functionally-graded foam-filled tubes(FGFTs)under drop-weight impact loading were investigated.Closed cell aluminum,A356 alloy and zinc foams fabricated by the liquid state processing were used as axial grading fillers for the manufacture of single-layer and multilayer structures with different configurations.The results indicate that the deformation of multilayer foam filled tubes initiates from the low-strength components,and then propagates in the high-strength components through the gradual increment of stress.The use of more A356 alloy and aluminum foam layers provides greater specific energy absorption(SEA)for the graded structures,whereas the high-strength zinc foam has no positive effect on the crash performance.The progressive collapse of graded structures consisting of the aluminum and A356 alloy foams occurs in a symmetric mode under quasi-static and drop-weight impact conditions.However,the zinc foam causes a combination of symmetric and extension modes as well as greater localized deformation under dynamic loading and greater local rupture in quasi-static loading condition.The Al−A356 foam-filled tubes with a combination of the highest SEA(10 J/g)and the lowest initial peak stress(σmax of 10.2 MPa)are considered as the best lightweight crashworthy structures.
文摘This study aims to introduce a novel hybrid design with a combination of two more common mechanisms for improving the capacity of systems in absorbing the kinetic energy of moving vehicles or devices. This new model consists of two individual mechanisms, i.e., expansion of a circular tube accompanied by crushing of an inner tube, which dissipate the energy through friction, plastic deformations and failures of inner tube. This study comprises 24 case studies surveyed under two different design controls, constant mass and constant volume, for comparing purposes. Finite element simulations are utilized so as to investigate models’ deformations and to extract some crashworthiness parameters in aid of representing the efficiency of the mechanism as well as conducting a parametric study between three different profiles of inner tube. This study shows that models with inner circular and hexagonal tube profile absorb higher amount of energy due to experiencing three different modes of energy dissipation systems, including folding, shear and ductile damages.
文摘The problems of EM energy absorption of human body irradiated by plane wave arediscussed by the Finite-Difference Time-Domain(FD-TD)method.The local Specific AbsorptionRates(SARs),the whole-body average SARs and the layer average SARs for the inhomogeneousblock model of human body with different incident direction and different polarization of theincident waves are calculated.The results show that the appearance of maximum EM energyabsorption is not always at the situation of the front incidence and the local SARs are moreimportant for the interaction of the EM fields with human body.All results provide more infor-mation about the electromagnetic dosimetry for human body.
基金Dalian Innovation Foundation of Science and Technology(2018J11CY005)State Key Laboratory of Structural Analysis for Industrial Equipment(S18313)are gratefully acknowledged.
文摘Bymeans of the local surface nanocrystallization that enables to change the material on local positions,an innovative embedded multi-cell(EMC)thin-walled energy absorption structures with local surface nanocrystallization is proposed in this paper.The local surface nanacrystallization stripes are regarded as the moving morphable components in the domain for optimal design.Results reveal that after optimizing the local surface nanocrystallization layout,the specific energy absorption(SEA)is increased by 50.78%compared with the untreated counterpart.Besides,in contrast with the optimized 4-cell structure,the SEA of the nanocrystallized embedded 9-cell structure is further enhanced by 27.68%,in contrast with the 9-cell structure,the SEA of the nanocrystallized embedded clapboard type 9-cell structure is enhanced by 3.61%.Thismethod provides a guidance for the design of newenergy absorption devices.
文摘This paper utilized the compressive tests results to establish some critical mechanical properties and crashworthiness parameters that may be required to design GRP composites of polyester matrix in automobile structures. Third order polynomial function was used with numerical methods to establish the elastic properties whish could not be established due to sensitivity of the Monsanto tensometer used to obtain the compression results. This study showed that the finite difference method captured the general trend of experimental solution giving optimum value of compressive stress as 23.78MPa at strain of 0.018 and elastic limit of 12.01MPa at 0.01 strain through finite difference analysis while the solution with third order polynomial interpolation gave optimum compressive stress as 36.57MPa at 0.018 strain and elastic limit of 12.143MPa. Also established with compression data is the compressive or buckling moduli of 1.2GPa. Gauss-Legendre two point rule was used to evaluate the area under the stress-strain curve which measured the amount of energy absorbed per unit volume of sample from where the energy absorbed at ultimate strength of 0.025J/M3- 0.22 J/M3 , energy at fracture of 0.62 J/M3- 1.62 J/M3 and the absorbed specific work 0.001J/Kg are established.
基金National Natural Science Foundation of China(No.51875099)。
文摘Polymer matrix types of fiber hybrid composites are key factors to improve ballistic impact damage tolerances.Here we report ballistic penetration damages of Kevlar/ultra-high molecular weight polyethylene(UHMWPE)hybrid composites with thermoplastic polyurethane(PU)matrix.The hybrid composites were penetrated by fragment-simulating projectiles(FSPs)using an air gun impact system.The effects of stacking sequences on the ballistic performance of hybrid composites were analyzed.Two types of specific energy absorption(the energy absorption per unit area density and the energy absorption per unit thickness)were investigated.It was found that the main damage modes of PU hybrid composites were fiber breakage,matrix damage,fiber pullout and interlayer delamination.The instantaneous deformation could not be used as a reference index for evaluating the ballistic performance of the target plate.The energy absorption process of the PU hybrid composites showed a nonlinear pattern.The hybrid structure affected the specific energy absorption of the materials.
基金supported by Guangdong Provincial Key-Area Research and Development Program of China(Grant No.2020B090923001)National Natural Science Foundation of China(Grant Nos.51922044,52205358)Central Universities Funda-mental Research Funds of China(Grant No.HUST:2022JYCXJJ021).
文摘Light-weight,high-strength metamaterials with excellent specific energy absorption(SEA)capabilities are sig-nificant for aerospace and automobile.The SEA of metamaterials largely depends on the material and structural design.Herein,inspired by the superior impact resistance of pomelo peel for protecting the pulp and the elevated SEA ability of a functionally graded structure,a graded bionic polyhedron metamaterial(GBPM)was designed and realized by 3D printing using a soft material(photosensitive resin)and a hard material(Ti-6Al-4V).Guided by compression tests and numerical simulations,the elevated SEA ability was independent of the materials.The fluctuation region appeared in hard-material-fabricated bionic polyhedron metamaterial(BPMs)and was absent in soft-material-fabricated BPMs in the stress-strain curves,resulting in the growth rate of the SEA value of the soft-material-fabricated GBPM being enhanced by 5.9 times compared with that of the hard-material-fabricated GBPM.The SEA values of soft-and hard-material-fabricated GBPM were 1.89 and 44.16 J/g,which exceed those of most soft-and hard-material-fabricated metamaterials reported in previous studies.These findings can guide the design of metamaterials with high energy absorption to resist external impacts.
文摘Functionally Graded Concrete (FGC) is fabricated at the Institute for Lightweight Structures and Conceptual Design (ILEK) by using a layer-by-layer technique with two different technological procedures: casting and dry spraying. Functional gradations are developed from two reference mixtures with diametrically opposed characteristics in terms of density, porosity, compression strength and elasticity modulus. In this study the first mixture consists of Normal Density Concrete (NDC), with density about 2160 kg·m^-3 while the second mixture helps to obtain a very lightweight concrete, with density about 830 kg·m^-3. The FGC specimens have layers with different alternating porosities and provide superior deformability capacity under bulk compression compared to NDC specimens. In addition, the FGC specimens experienced a graceful failure behaviour, absorbing high amounts of energy during extended compression paths. The porosity variation inside the layout of tested specimens is inspired by the internal structure of sea urchin spines of heterocentrotus mammillatus, a promising role model for energy absorption in biomimetic engineering.