The purpose of this study is to evaluate the Spectral Angle Mapper (SAM) classification method for determining the optimum threshold (maximum spectral angle) to unveil the hydrothermal mineral assemblages related ...The purpose of this study is to evaluate the Spectral Angle Mapper (SAM) classification method for determining the optimum threshold (maximum spectral angle) to unveil the hydrothermal mineral assemblages related to mineral deposits. The study area indicates good potential for Cu-Au porphyry, epithermal gold deposits and hydrothermal alteration well developed in arid and semiarid climates, which makes this region significant for Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) image processing analysis. Given that achieving an acceptable mineral mapping requires knowing the alteration patterns, petrochemistry and petrogenesis of the igneous rocks while considering the effect of weathering, overprinting of supergene alteration, overprinting of hypogene alteration and host rock spectral mixing, SAM classification was implemented for argillic, sericitic, propylitic, alunitization, silicification and iron oxide zones of six previously known mineral deposits: Maherabad, a Cu-Au porphyry system; Sheikhabad, an upper part of Cu-Au porphyry system; Khoonik, an Intrusion related Au system; Barmazid, a low sulfidation epithermal system; Khopik, a Cu-Au porphyry system; and Hanish, an epithermal Au system. Thus, the investigation showed that although the whole alteration zones are affected by mixing, it is also possible to produce a favorable hydrothermal mineral map by such complementary data as petrology, petrochemistry and alteration patterns.展开更多
Taking into account the demands of hyperspectral remote sensing(RS) image retrieval and processing, some encoding methods of spectral vector including direct encoding, feature-based encoding and tree-based encoding me...Taking into account the demands of hyperspectral remote sensing(RS) image retrieval and processing, some encoding methods of spectral vector including direct encoding, feature-based encoding and tree-based encoding methods are proposed and compared. In direct encoding, based on the analysis of binary encoding and quad-value encoding, decimal encoding is proposed. It is proved that quad-value encoding and decimal encoding are suitable to fast processing and retrieval. In absorption feature-based encoding method, five common metrics are compared. Because locations of reflection/absorption features are sensitive to noise, this method is not very effective in retrieval. In tree-based encoding methods, bitree, quadtree, octree and hextree are proposed and discussed. It is proved that 2-level octree and 2-level hextree are more effective than bitree and quadtree. Finally, quad-value encoding, decimal encoding, 2-level octree and 2-level hextree are proposed in spectral vectors encoding, similarity measure and hyperspectral RS image retrieval.展开更多
In Malaysia, airborne hyperspectral remote sensing is a relatively new technique used for research and commercial value in forest inventory and mapping. An advantage of airborne remote sensing, compared to satellite r...In Malaysia, airborne hyperspectral remote sensing is a relatively new technique used for research and commercial value in forest inventory and mapping. An advantage of airborne remote sensing, compared to satellite remote sensing, is its capability of offering a very high spatial resolution images. Thus, UPM-TropAIR AISA's airborne hyperspectral imagery that has been used in this study provides great quantity, better quality and also lower cost in identifying, quantifying and mapping of the Malaysian tropical timber forest resources. For the first stage in this study, the development of spectral library is deemed required in order for the Spectral Angle Mapper (SAM) classification be used to separate and map individual tree species in a tropical mixed mountain forest of Gunong Stong Forest Reserve. Pre-processing, enhancement and interpretation of image were conducted using ENVI Version 4.0 software. Results indicated that a total of eight commercial timber tree species was identified and mapped in a study plot of 5 ha using the TropAIR airborne hyperspectral imager with the aid of ground truthings.展开更多
Orbital platforms spectral sensitivity can be a major limitation in ascertaining detailed identification and mapping of arboreal ecosystems. Field-derived spectral signatures using a narrow-band sensor, for example, A...Orbital platforms spectral sensitivity can be a major limitation in ascertaining detailed identification and mapping of arboreal ecosystems. Field-derived spectral signatures using a narrow-band sensor, for example, ASD (Analytical Spectral Devices, Boulder, CO, USA) FieldSpec<sup>®</sup></sup> Pro cover a spectral FR (Full Range) of 350 - 2500 nm exceeding spectral sensitivities of commonly used orbital platforms. The plausibility of deriving a spectral library of trees or forests within a training set is venerable. On the other hand, diagnostic spectral features between tree species or types are inherently difficult to ascertain from orbital platforms. This is so especially when the spectral library is applied to a demarcated region beyond the extents of training set. Basic suborbital limitations in detailed identification of trees and forests are presented in this study. We draw attention to spectral or temporal deficiencies and offer probable solutions depending on preferred or optimal spectral sensitivities. For example, Hyperion with 220 bands (400 - 2500 nm), one of the three primary instruments on the EO-1 spacecraft, has narrow bandwidths and covers the entire range of the spectral profiles collected for North Dakota tree species. With a 30 m spatial resolution, it is still useful in species identification in moderate stands of forest. Hyperion is a tasking satellite with limited passes over North Dakota (≈7% of total area) limiting its use as a platform of choice for statewide forest resource mapping.展开更多
Eastern Iran has great potential for the discovery of different types of mineralization. The study area encompasses Tertiary magmatism in the northern Lut block located in northern Khur, South Khorasan, eastern Iran a...Eastern Iran has great potential for the discovery of different types of mineralization. The study area encompasses Tertiary magmatism in the northern Lut block located in northern Khur, South Khorasan, eastern Iran and is mostly covered by volcanic rocks, which are intruded by porphyritic subvolcanic intrusions in some places. Application of the spectral angle mapper (SAM) technique to Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) images detected sericitic, argillic, and propylitic alterations, silicification, and secondary iron oxides. The alteration is linear and associated within vein-type mineralization. Twelve prospective areas are selected for detailed exploration and based on our processing results, in addition to NW-SE faults, which are associated with Cu mineralization indications, NE-SW faults are also shown to be important. Based on the presence of subvolcanic rocks and numerous Cu ± Pb-Zn vein-type mineralizations, extensive alteration, high anomaly of Cu and Zn (up to 100 ppm), the age (43.6 to 31.4 Ma) and the initial $78r/S6Sr ratio (0.7047 to 0.7065) of the igneous rocks, and the metallogenic epoch of the Lut block (middle Eocene-lower Oligocene) for the formation of porphyry Cu and epithermal deposits, the studied area shows great potential for porphyry copper deposits.展开更多
In land-based spectral imaging,the spectra of ground objects are inevitably afected by the imaging conditions(weather conditions,atmospheric conditions,light conditions,zenith and azimuth angle conditions)and spatial ...In land-based spectral imaging,the spectra of ground objects are inevitably afected by the imaging conditions(weather conditions,atmospheric conditions,light conditions,zenith and azimuth angle conditions)and spatial distribution of targets,leading to uncertainties featured by“same object diferent spectrum”.That is,the spectrum of a ground object may change within a certain range under diferent imaging conditions.Traditional target detection(TD)methods are mainly based on similarity measurements and do not fully account for the spectral uncertainties.These detection methods are prone to false detections or missed detections.Therefore,reducing the impact of spectral uncertainties on TD is an important research topic in hyperspectral imaging.In this paper,we frst review traditional TD methods and compare their principles and characteristics.It is found that the spectral correlation angle(SCA)method has good adaptability in land-based imaging.The shortcoming of the SCA method that it cannot refect the local spectrum characteristics,is also analyzed.As the efect of spectral uncertainties cannot be completely overcome by the SCA method,a new similarity measurement method,the weighted spectral correlation angle(WSCA)method,is proposed.It can reduce the infuence of spectral uncertainties on TD by increasing the weight of particular bands.Finally,we use two sets of experiments to analyze the efect of the WSCA method on TD.Its performance in overcoming spectral uncertainties caused by variations in imaging conditions or uneven spatial distributions of targets is tested.The results show that the WSCA method can efectively reduce the infuence of spectral uncertainties and obtain a good detection result.展开更多
This paper describes the development of a hyperspectral imaging approach for identifying fruits infected with citrus black spot(CBS).Hyperspectral images were taken of healthy fruit and those with CBS symptoms or othe...This paper describes the development of a hyperspectral imaging approach for identifying fruits infected with citrus black spot(CBS).Hyperspectral images were taken of healthy fruit and those with CBS symptoms or other potentially confounding peel conditions such as greasy spot,wind scar,or melanose.Spectral angle mapper(SAM)and spectral information divergence(SID)hyperspectral analysis approaches were used to classify fruit samples into two classes:CBS or non-CBS.The classification accuracy for CBS with SAM approach was 97.90%,and 97.14% with SID.The combination of hyperspectral images and two classification approaches(SID and SAM)have proven to be effective in recognizing CBS in the presence of other potentially confounding fruit peel conditions.The study result can be a reference for the non-destructive detection of fruits infected with citrus black spot.展开更多
The object-based against pixel-based image analysis approaches were assessed for lithological mapping in a geologically complex terrain using Visible Near Infrared(VNIR)bands of WorldView-3(WV-3)satellite imagery.The ...The object-based against pixel-based image analysis approaches were assessed for lithological mapping in a geologically complex terrain using Visible Near Infrared(VNIR)bands of WorldView-3(WV-3)satellite imagery.The study area is Hormuz Island,southern Iran,a salt dome composed of dominant sedimentary and igneous rocks.When performing the object-based image analysis(OBLA)approach,the textural and spectral characteristics of lithological features were analyzed by the use of support vector machine(SVM)algorithm.However,in the pixelbased image analysis(PBIA),the spectra of lithological end-members,extracted from imagery,were used through the spectral angle mapper(SAM)method.Several test samples were used in a confusion matrix to assess the accuracy of classification methods quantitatively.Results showed that OBIA was capable of lithological mapping with an overall accuracy of 86.54%which was 19.33%greater than the accuracy of PBIA.OBIA also reduced the salt-and-pepper artifact pixels and produced a more realistic map with sharper lithological borders.This research showed limitations of pixel-based method due to relying merely on the spectral characteristics of rock types when applied to high-spatial-resolution VNIR bands of WorldView-3 imagery.It is concluded that the application of an object-based image analysis approach obtains a more accurate lithological classification when compared to a pixel-based image analysis algorithm.展开更多
Information on Earth’s land surface cover is commonly obtained through digital image analysis of data acquired from remote sensing sensors.In this study,we evaluated the use of diverse classification techniques in di...Information on Earth’s land surface cover is commonly obtained through digital image analysis of data acquired from remote sensing sensors.In this study,we evaluated the use of diverse classification techniques in discriminating land use/cover types in a typical Mediterranean setting using Hyperion imagery.For this purpose,the spectral angle mapper(SAM),the object-based and the non-linear spectral unmixing based on artificial neural networks(ANNs)techniques were applied.A further objective had been to investigate the effect of two approaches for training sites selection in the SAM classification,namely of the pixel purity index(PPI)and of the direct selection of training points from the Hyperion imagery assisted by a QuickBird imagery and field-based training sites.Objectbased classification outperformed the other techniques with an overall accuracy of 83%.Sub-pixel classification based on the ANN showed an overall accuracy of 52%,very close to that of SAM(48%).SAM applied using the training sites selected directly from the Hyperion imagery supported by the QuickBird image and the field visits returned an increase accuracy by 16%.Yet,all techniques appeared to suffer from the relatively low spatial resolution of the Hyperion imagery,which affected the spectral separation among the land use/cover classes.展开更多
基金supported by National Geoscience Database and Geological Survey of Iran
文摘The purpose of this study is to evaluate the Spectral Angle Mapper (SAM) classification method for determining the optimum threshold (maximum spectral angle) to unveil the hydrothermal mineral assemblages related to mineral deposits. The study area indicates good potential for Cu-Au porphyry, epithermal gold deposits and hydrothermal alteration well developed in arid and semiarid climates, which makes this region significant for Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) image processing analysis. Given that achieving an acceptable mineral mapping requires knowing the alteration patterns, petrochemistry and petrogenesis of the igneous rocks while considering the effect of weathering, overprinting of supergene alteration, overprinting of hypogene alteration and host rock spectral mixing, SAM classification was implemented for argillic, sericitic, propylitic, alunitization, silicification and iron oxide zones of six previously known mineral deposits: Maherabad, a Cu-Au porphyry system; Sheikhabad, an upper part of Cu-Au porphyry system; Khoonik, an Intrusion related Au system; Barmazid, a low sulfidation epithermal system; Khopik, a Cu-Au porphyry system; and Hanish, an epithermal Au system. Thus, the investigation showed that although the whole alteration zones are affected by mixing, it is also possible to produce a favorable hydrothermal mineral map by such complementary data as petrology, petrochemistry and alteration patterns.
文摘Taking into account the demands of hyperspectral remote sensing(RS) image retrieval and processing, some encoding methods of spectral vector including direct encoding, feature-based encoding and tree-based encoding methods are proposed and compared. In direct encoding, based on the analysis of binary encoding and quad-value encoding, decimal encoding is proposed. It is proved that quad-value encoding and decimal encoding are suitable to fast processing and retrieval. In absorption feature-based encoding method, five common metrics are compared. Because locations of reflection/absorption features are sensitive to noise, this method is not very effective in retrieval. In tree-based encoding methods, bitree, quadtree, octree and hextree are proposed and discussed. It is proved that 2-level octree and 2-level hextree are more effective than bitree and quadtree. Finally, quad-value encoding, decimal encoding, 2-level octree and 2-level hextree are proposed in spectral vectors encoding, similarity measure and hyperspectral RS image retrieval.
文摘In Malaysia, airborne hyperspectral remote sensing is a relatively new technique used for research and commercial value in forest inventory and mapping. An advantage of airborne remote sensing, compared to satellite remote sensing, is its capability of offering a very high spatial resolution images. Thus, UPM-TropAIR AISA's airborne hyperspectral imagery that has been used in this study provides great quantity, better quality and also lower cost in identifying, quantifying and mapping of the Malaysian tropical timber forest resources. For the first stage in this study, the development of spectral library is deemed required in order for the Spectral Angle Mapper (SAM) classification be used to separate and map individual tree species in a tropical mixed mountain forest of Gunong Stong Forest Reserve. Pre-processing, enhancement and interpretation of image were conducted using ENVI Version 4.0 software. Results indicated that a total of eight commercial timber tree species was identified and mapped in a study plot of 5 ha using the TropAIR airborne hyperspectral imager with the aid of ground truthings.
文摘Orbital platforms spectral sensitivity can be a major limitation in ascertaining detailed identification and mapping of arboreal ecosystems. Field-derived spectral signatures using a narrow-band sensor, for example, ASD (Analytical Spectral Devices, Boulder, CO, USA) FieldSpec<sup>®</sup></sup> Pro cover a spectral FR (Full Range) of 350 - 2500 nm exceeding spectral sensitivities of commonly used orbital platforms. The plausibility of deriving a spectral library of trees or forests within a training set is venerable. On the other hand, diagnostic spectral features between tree species or types are inherently difficult to ascertain from orbital platforms. This is so especially when the spectral library is applied to a demarcated region beyond the extents of training set. Basic suborbital limitations in detailed identification of trees and forests are presented in this study. We draw attention to spectral or temporal deficiencies and offer probable solutions depending on preferred or optimal spectral sensitivities. For example, Hyperion with 220 bands (400 - 2500 nm), one of the three primary instruments on the EO-1 spacecraft, has narrow bandwidths and covers the entire range of the spectral profiles collected for North Dakota tree species. With a 30 m spatial resolution, it is still useful in species identification in moderate stands of forest. Hyperion is a tasking satellite with limited passes over North Dakota (≈7% of total area) limiting its use as a platform of choice for statewide forest resource mapping.
文摘Eastern Iran has great potential for the discovery of different types of mineralization. The study area encompasses Tertiary magmatism in the northern Lut block located in northern Khur, South Khorasan, eastern Iran and is mostly covered by volcanic rocks, which are intruded by porphyritic subvolcanic intrusions in some places. Application of the spectral angle mapper (SAM) technique to Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) images detected sericitic, argillic, and propylitic alterations, silicification, and secondary iron oxides. The alteration is linear and associated within vein-type mineralization. Twelve prospective areas are selected for detailed exploration and based on our processing results, in addition to NW-SE faults, which are associated with Cu mineralization indications, NE-SW faults are also shown to be important. Based on the presence of subvolcanic rocks and numerous Cu ± Pb-Zn vein-type mineralizations, extensive alteration, high anomaly of Cu and Zn (up to 100 ppm), the age (43.6 to 31.4 Ma) and the initial $78r/S6Sr ratio (0.7047 to 0.7065) of the igneous rocks, and the metallogenic epoch of the Lut block (middle Eocene-lower Oligocene) for the formation of porphyry Cu and epithermal deposits, the studied area shows great potential for porphyry copper deposits.
基金supported by the National Natural Science Foundation of China(Grant No.62005319).
文摘In land-based spectral imaging,the spectra of ground objects are inevitably afected by the imaging conditions(weather conditions,atmospheric conditions,light conditions,zenith and azimuth angle conditions)and spatial distribution of targets,leading to uncertainties featured by“same object diferent spectrum”.That is,the spectrum of a ground object may change within a certain range under diferent imaging conditions.Traditional target detection(TD)methods are mainly based on similarity measurements and do not fully account for the spectral uncertainties.These detection methods are prone to false detections or missed detections.Therefore,reducing the impact of spectral uncertainties on TD is an important research topic in hyperspectral imaging.In this paper,we frst review traditional TD methods and compare their principles and characteristics.It is found that the spectral correlation angle(SCA)method has good adaptability in land-based imaging.The shortcoming of the SCA method that it cannot refect the local spectrum characteristics,is also analyzed.As the efect of spectral uncertainties cannot be completely overcome by the SCA method,a new similarity measurement method,the weighted spectral correlation angle(WSCA)method,is proposed.It can reduce the infuence of spectral uncertainties on TD by increasing the weight of particular bands.Finally,we use two sets of experiments to analyze the efect of the WSCA method on TD.Its performance in overcoming spectral uncertainties caused by variations in imaging conditions or uneven spatial distributions of targets is tested.The results show that the WSCA method can efectively reduce the infuence of spectral uncertainties and obtain a good detection result.
文摘This paper describes the development of a hyperspectral imaging approach for identifying fruits infected with citrus black spot(CBS).Hyperspectral images were taken of healthy fruit and those with CBS symptoms or other potentially confounding peel conditions such as greasy spot,wind scar,or melanose.Spectral angle mapper(SAM)and spectral information divergence(SID)hyperspectral analysis approaches were used to classify fruit samples into two classes:CBS or non-CBS.The classification accuracy for CBS with SAM approach was 97.90%,and 97.14% with SID.The combination of hyperspectral images and two classification approaches(SID and SAM)have proven to be effective in recognizing CBS in the presence of other potentially confounding fruit peel conditions.The study result can be a reference for the non-destructive detection of fruits infected with citrus black spot.
文摘The object-based against pixel-based image analysis approaches were assessed for lithological mapping in a geologically complex terrain using Visible Near Infrared(VNIR)bands of WorldView-3(WV-3)satellite imagery.The study area is Hormuz Island,southern Iran,a salt dome composed of dominant sedimentary and igneous rocks.When performing the object-based image analysis(OBLA)approach,the textural and spectral characteristics of lithological features were analyzed by the use of support vector machine(SVM)algorithm.However,in the pixelbased image analysis(PBIA),the spectra of lithological end-members,extracted from imagery,were used through the spectral angle mapper(SAM)method.Several test samples were used in a confusion matrix to assess the accuracy of classification methods quantitatively.Results showed that OBIA was capable of lithological mapping with an overall accuracy of 86.54%which was 19.33%greater than the accuracy of PBIA.OBIA also reduced the salt-and-pepper artifact pixels and produced a more realistic map with sharper lithological borders.This research showed limitations of pixel-based method due to relying merely on the spectral characteristics of rock types when applied to high-spatial-resolution VNIR bands of WorldView-3 imagery.It is concluded that the application of an object-based image analysis approach obtains a more accurate lithological classification when compared to a pixel-based image analysis algorithm.
文摘Information on Earth’s land surface cover is commonly obtained through digital image analysis of data acquired from remote sensing sensors.In this study,we evaluated the use of diverse classification techniques in discriminating land use/cover types in a typical Mediterranean setting using Hyperion imagery.For this purpose,the spectral angle mapper(SAM),the object-based and the non-linear spectral unmixing based on artificial neural networks(ANNs)techniques were applied.A further objective had been to investigate the effect of two approaches for training sites selection in the SAM classification,namely of the pixel purity index(PPI)and of the direct selection of training points from the Hyperion imagery assisted by a QuickBird imagery and field-based training sites.Objectbased classification outperformed the other techniques with an overall accuracy of 83%.Sub-pixel classification based on the ANN showed an overall accuracy of 52%,very close to that of SAM(48%).SAM applied using the training sites selected directly from the Hyperion imagery supported by the QuickBird image and the field visits returned an increase accuracy by 16%.Yet,all techniques appeared to suffer from the relatively low spatial resolution of the Hyperion imagery,which affected the spectral separation among the land use/cover classes.