Spectral subtraction is used in this research as a method to remove noise from noisy speech signals in the frequency domain. This method consists of computing the spectrum of the noisy speech using the Fast Fourier Tr...Spectral subtraction is used in this research as a method to remove noise from noisy speech signals in the frequency domain. This method consists of computing the spectrum of the noisy speech using the Fast Fourier Transform (FFT) and subtracting the average magnitude of the noise spectrum from the noisy speech spectrum. We applied spectral subtraction to the speech signal “Real graph”. A digital audio recorder system embedded in a personal computer was used to sample the speech signal “Real graph” to which we digitally added vacuum cleaner noise. The noise removal algorithm was implemented using Matlab software by storing the noisy speech data into Hanning time-widowed half-overlapped data buffers, computing the corresponding spectrums using the FFT, removing the noise from the noisy speech, and reconstructing the speech back into the time domain using the inverse Fast Fourier Transform (IFFT). The performance of the algorithm was evaluated by calculating the Speech to Noise Ratio (SNR). Frame averaging was introduced as an optional technique that could improve the SNR. Seventeen different configurations with various lengths of the Hanning time windows, various degrees of data buffers overlapping, and various numbers of frames to be averaged were investigated in view of improving the SNR. Results showed that using one-fourth overlapped data buffers with 128 points Hanning windows and no frames averaging leads to the best performance in removing noise from the noisy speech.展开更多
Two gain forms of spectral amplitude subtraction are derived theoretically without neglecting the correlation of speech and noise spectrum during the period of a fralne. In the implementation, the constrained gain is ...Two gain forms of spectral amplitude subtraction are derived theoretically without neglecting the correlation of speech and noise spectrum during the period of a fralne. In the implementation, the constrained gain is expressed as a function of noncausal a priori SNR (Signal-to-Noise Ratio). Noise and noncausal a priori SNR are estimated from the multitaper spectrum of the noisy signal with algorithms modified to be suitable for the multitaper spectruln. Objective evaluations show that in case of white Gaussian noise the proposed method outperforms some methods based on LSA (Log Spectral Amplitude) in terms of MBSD (Modified Bark Spectral Distortion), segmental SNR and overall SNR, and informal listening tests show that speech reconstructed in this way has little speech distortion and musical noise is nearly inaudible even at low SNR.展开更多
Aiming at the problem of music noise introduced by classical spectral subtraction,a shorttime modulation domain(STM)spectral subtraction method has been successfully applied for singlechannel speech enhancement.Howeve...Aiming at the problem of music noise introduced by classical spectral subtraction,a shorttime modulation domain(STM)spectral subtraction method has been successfully applied for singlechannel speech enhancement.However,due to the inaccurate voice activity detection(VAD),the residual music noise and enhanced performance still need to be further improved,especially in the low signal to noise ratio(SNR)scenarios.To address this issue,an improved frame iterative spectral subtraction in the STM domain(IMModSSub)is proposed.More specifically,with the inter-frame correlation,the noise subtraction is directly applied to handle the noisy signal for each frame in the STM domain.Then,the noisy signal is classified into speech or silence frames based on a predefined threshold of segmented SNR.With these classification results,a corresponding mask function is developed for noisy speech after noise subtraction.Finally,exploiting the increased sparsity of speech signal in the modulation domain,the orthogonal matching pursuit(OMP)technique is employed to the speech frames for improving the speech quality and intelligibility.The effectiveness of the proposed method is evaluated with three types of noise,including white noise,pink noise,and hfchannel noise.The obtained results show that the proposed method outperforms some established baselines at lower SNRs(-5 to +5 dB).展开更多
This paper addresses the problem of single-channel speech enhancement in the adverse environment. The critical-band rate scale based on improved multi-band spectral subtraction is investigated in this study for enhanc...This paper addresses the problem of single-channel speech enhancement in the adverse environment. The critical-band rate scale based on improved multi-band spectral subtraction is investigated in this study for enhancement of single-channel speech. In this work, the whole speech spectrum is divided into different non-uniformly spaced frequency bands in accordance with the critical-band rate scale of the psycho-acoustic model and the spectral over-subtraction is carried-out separately in each band. In addition, for the estimation of the noise from each band, the adaptive noise estimation approach is used and does not require explicit speech silence detection. The noise is estimated and updated by adaptively smoothing the noisy signal power in each band. The smoothing parameter is controlled by a-posteriori signal-to-noise ratio (SNR). For the performance analysis of the proposed algorithm, the objective measures, such as, SNR, segmental SNR, and perceptual evaluations of the speech quality are conducted for the variety of noises at different levels of SNRs. The speech spectrogram and objective evaluations of the proposed algorithm are compared with other standard speech enhancement algorithms and proved that the musical structure of the remnant noise and background noise is better suppressed by the proposed algorithm.展开更多
AIM: To assess the value of gemstone spectral imaging (GSI) in efficacy evaluation in hepatocellular cancer (HCC) after transcatheter arterial chemoembolization (TACE) treatment.METHODS: Thirty patients with HCC under...AIM: To assess the value of gemstone spectral imaging (GSI) in efficacy evaluation in hepatocellular cancer (HCC) after transcatheter arterial chemoembolization (TACE) treatment.METHODS: Thirty patients with HCC underwent GSI, including nonenhanced, arterial, portalvenous and delayed phase scans, after TACE treatment. Arterial phase images were acquired with GSI for reconstruction of virtual nonenhanced images and color overlay images. Digital subtraction angiography (DSA) was performed in all these patients. Two blinded and independent readers evaluated the data in two reading sessions; standard nonenhanced, arterial, portalvenous, and delayed phase images were read in session A, and the optimal monochromatic images, iodine/water based images and spectrum features were read in session B. Sensitivity and specificity were calculated with the DSA data as the reference standard. The sensitivity and specificity were compared using the χ<sup>2</sup> test.RESULTS: DSA revealed 154 lesions in 30 patients, and 100 of them had blood supply. Overall sensitivity and specificity were 72% (72/100) and 77.8% (42/54) for session A, and 97% (97/100) and 94.4% (51/54) for session B, respectively. The sensitivity and specificity of the two reading sessions were significantly different (χ<sup>2</sup> = 23.04, χ<sup>2</sup> = 7.11, P < 0.05).CONCLUSION: Compared with conventional CT, GSI could significantly improve the detection of small and multiple lesions without increasing the radiation dose. Based on spectrum features, GSI could assess tumor homogeneity and more accurately identify residual tumors and recurrent or metastatic lesions during efficacy evaluation and follow-up in HCC after TACE treatment.展开更多
A good voice-band signal classification can not only enable the safe application of speech ceding techniques, the implementation of a Digital Signal Interpolation (DSI) system, but also facilitate network administra...A good voice-band signal classification can not only enable the safe application of speech ceding techniques, the implementation of a Digital Signal Interpolation (DSI) system, but also facilitate network administration and planning by providing accurate voice-band traffic analysis. A new method is proposed to detect and classify the presence of various voice-band signals on the General Switched Telephone Network (GSTN). The method uses a combination of simple base classifiers through the AdaBoost algorithm. The conventional classification features for voice- band data classification are combined and optimized by the AdaBoost algorithm and spectral subtraction method. Experiments show the simpleness, effectiveness, efficiency and flexibility of the method.展开更多
The paper proposes a multichannel digital filtering method for signal, discusses the application of spectral analysis in the method, and introduces an improved fast transformation formula for Fourier forward and inver...The paper proposes a multichannel digital filtering method for signal, discusses the application of spectral analysis in the method, and introduces an improved fast transformation formula for Fourier forward and inverse transformation.展开更多
This paper proposes a multi-band speech enhancement algorithm exploiting iterative processing for enhancement of single channel speech. In the proposed algorithm, the output of the multi-band spectral subtraction (MBS...This paper proposes a multi-band speech enhancement algorithm exploiting iterative processing for enhancement of single channel speech. In the proposed algorithm, the output of the multi-band spectral subtraction (MBSS) algorithm is used as the input signal again for next iteration process. As after the first MBSS processing step, the additive noise transforms to the remnant noise, the remnant noise needs to be further re-estimated. The proposed algorithm reduces the remnant musical noise further by iterating the enhanced output signal to the input again and performing the operation repeatedly. The newly estimated remnant noise is further used to process the next MBSS step. This procedure is iterated a small number of times. The proposed algorithm estimates noise in each iteration and spectral over-subtraction is executed independently in each band. The experiments are conducted for various types of noises. The performance of the proposed enhancement algorithm is evaluated for various types of noises at different level of SNRs using, 1) objective quality measures: signal-to-noise ratio (SNR), segmental SNR, perceptual evaluation of speech quality (PESQ);and 2) subjective quality measure: mean opinion score (MOS). The results of proposed enhancement algorithm are compared with the popular MBSS algorithm. Experimental results as well as the objective and subjective quality measurement test results confirm that the enhanced speech obtained from the proposed algorithm is more pleasant to listeners than speech enhanced by classical MBSS algorithm.展开更多
文摘Spectral subtraction is used in this research as a method to remove noise from noisy speech signals in the frequency domain. This method consists of computing the spectrum of the noisy speech using the Fast Fourier Transform (FFT) and subtracting the average magnitude of the noise spectrum from the noisy speech spectrum. We applied spectral subtraction to the speech signal “Real graph”. A digital audio recorder system embedded in a personal computer was used to sample the speech signal “Real graph” to which we digitally added vacuum cleaner noise. The noise removal algorithm was implemented using Matlab software by storing the noisy speech data into Hanning time-widowed half-overlapped data buffers, computing the corresponding spectrums using the FFT, removing the noise from the noisy speech, and reconstructing the speech back into the time domain using the inverse Fast Fourier Transform (IFFT). The performance of the algorithm was evaluated by calculating the Speech to Noise Ratio (SNR). Frame averaging was introduced as an optional technique that could improve the SNR. Seventeen different configurations with various lengths of the Hanning time windows, various degrees of data buffers overlapping, and various numbers of frames to be averaged were investigated in view of improving the SNR. Results showed that using one-fourth overlapped data buffers with 128 points Hanning windows and no frames averaging leads to the best performance in removing noise from the noisy speech.
基金Supported by 973 Project of China (No.2002 CB312102)and the National Natural Science Foundation of China (No.60272044).
文摘Two gain forms of spectral amplitude subtraction are derived theoretically without neglecting the correlation of speech and noise spectrum during the period of a fralne. In the implementation, the constrained gain is expressed as a function of noncausal a priori SNR (Signal-to-Noise Ratio). Noise and noncausal a priori SNR are estimated from the multitaper spectrum of the noisy signal with algorithms modified to be suitable for the multitaper spectruln. Objective evaluations show that in case of white Gaussian noise the proposed method outperforms some methods based on LSA (Log Spectral Amplitude) in terms of MBSD (Modified Bark Spectral Distortion), segmental SNR and overall SNR, and informal listening tests show that speech reconstructed in this way has little speech distortion and musical noise is nearly inaudible even at low SNR.
基金National Natural Science Foundation of China(NSFC)(No.61671075)Major Program of National Natural Science Foundation of China(No.61631003)。
文摘Aiming at the problem of music noise introduced by classical spectral subtraction,a shorttime modulation domain(STM)spectral subtraction method has been successfully applied for singlechannel speech enhancement.However,due to the inaccurate voice activity detection(VAD),the residual music noise and enhanced performance still need to be further improved,especially in the low signal to noise ratio(SNR)scenarios.To address this issue,an improved frame iterative spectral subtraction in the STM domain(IMModSSub)is proposed.More specifically,with the inter-frame correlation,the noise subtraction is directly applied to handle the noisy signal for each frame in the STM domain.Then,the noisy signal is classified into speech or silence frames based on a predefined threshold of segmented SNR.With these classification results,a corresponding mask function is developed for noisy speech after noise subtraction.Finally,exploiting the increased sparsity of speech signal in the modulation domain,the orthogonal matching pursuit(OMP)technique is employed to the speech frames for improving the speech quality and intelligibility.The effectiveness of the proposed method is evaluated with three types of noise,including white noise,pink noise,and hfchannel noise.The obtained results show that the proposed method outperforms some established baselines at lower SNRs(-5 to +5 dB).
文摘This paper addresses the problem of single-channel speech enhancement in the adverse environment. The critical-band rate scale based on improved multi-band spectral subtraction is investigated in this study for enhancement of single-channel speech. In this work, the whole speech spectrum is divided into different non-uniformly spaced frequency bands in accordance with the critical-band rate scale of the psycho-acoustic model and the spectral over-subtraction is carried-out separately in each band. In addition, for the estimation of the noise from each band, the adaptive noise estimation approach is used and does not require explicit speech silence detection. The noise is estimated and updated by adaptively smoothing the noisy signal power in each band. The smoothing parameter is controlled by a-posteriori signal-to-noise ratio (SNR). For the performance analysis of the proposed algorithm, the objective measures, such as, SNR, segmental SNR, and perceptual evaluations of the speech quality are conducted for the variety of noises at different levels of SNRs. The speech spectrogram and objective evaluations of the proposed algorithm are compared with other standard speech enhancement algorithms and proved that the musical structure of the remnant noise and background noise is better suppressed by the proposed algorithm.
文摘AIM: To assess the value of gemstone spectral imaging (GSI) in efficacy evaluation in hepatocellular cancer (HCC) after transcatheter arterial chemoembolization (TACE) treatment.METHODS: Thirty patients with HCC underwent GSI, including nonenhanced, arterial, portalvenous and delayed phase scans, after TACE treatment. Arterial phase images were acquired with GSI for reconstruction of virtual nonenhanced images and color overlay images. Digital subtraction angiography (DSA) was performed in all these patients. Two blinded and independent readers evaluated the data in two reading sessions; standard nonenhanced, arterial, portalvenous, and delayed phase images were read in session A, and the optimal monochromatic images, iodine/water based images and spectrum features were read in session B. Sensitivity and specificity were calculated with the DSA data as the reference standard. The sensitivity and specificity were compared using the χ<sup>2</sup> test.RESULTS: DSA revealed 154 lesions in 30 patients, and 100 of them had blood supply. Overall sensitivity and specificity were 72% (72/100) and 77.8% (42/54) for session A, and 97% (97/100) and 94.4% (51/54) for session B, respectively. The sensitivity and specificity of the two reading sessions were significantly different (χ<sup>2</sup> = 23.04, χ<sup>2</sup> = 7.11, P < 0.05).CONCLUSION: Compared with conventional CT, GSI could significantly improve the detection of small and multiple lesions without increasing the radiation dose. Based on spectrum features, GSI could assess tumor homogeneity and more accurately identify residual tumors and recurrent or metastatic lesions during efficacy evaluation and follow-up in HCC after TACE treatment.
文摘A good voice-band signal classification can not only enable the safe application of speech ceding techniques, the implementation of a Digital Signal Interpolation (DSI) system, but also facilitate network administration and planning by providing accurate voice-band traffic analysis. A new method is proposed to detect and classify the presence of various voice-band signals on the General Switched Telephone Network (GSTN). The method uses a combination of simple base classifiers through the AdaBoost algorithm. The conventional classification features for voice- band data classification are combined and optimized by the AdaBoost algorithm and spectral subtraction method. Experiments show the simpleness, effectiveness, efficiency and flexibility of the method.
文摘The paper proposes a multichannel digital filtering method for signal, discusses the application of spectral analysis in the method, and introduces an improved fast transformation formula for Fourier forward and inverse transformation.
文摘This paper proposes a multi-band speech enhancement algorithm exploiting iterative processing for enhancement of single channel speech. In the proposed algorithm, the output of the multi-band spectral subtraction (MBSS) algorithm is used as the input signal again for next iteration process. As after the first MBSS processing step, the additive noise transforms to the remnant noise, the remnant noise needs to be further re-estimated. The proposed algorithm reduces the remnant musical noise further by iterating the enhanced output signal to the input again and performing the operation repeatedly. The newly estimated remnant noise is further used to process the next MBSS step. This procedure is iterated a small number of times. The proposed algorithm estimates noise in each iteration and spectral over-subtraction is executed independently in each band. The experiments are conducted for various types of noises. The performance of the proposed enhancement algorithm is evaluated for various types of noises at different level of SNRs using, 1) objective quality measures: signal-to-noise ratio (SNR), segmental SNR, perceptual evaluation of speech quality (PESQ);and 2) subjective quality measure: mean opinion score (MOS). The results of proposed enhancement algorithm are compared with the popular MBSS algorithm. Experimental results as well as the objective and subjective quality measurement test results confirm that the enhanced speech obtained from the proposed algorithm is more pleasant to listeners than speech enhanced by classical MBSS algorithm.