(Multichannel)Singular spectrum analysis is considered as one of the most effective methods for seismic incoherent noise suppression.It utilizes the low-rank feature of seismic signal and regards the noise suppression...(Multichannel)Singular spectrum analysis is considered as one of the most effective methods for seismic incoherent noise suppression.It utilizes the low-rank feature of seismic signal and regards the noise suppression as a low-rank reconstruction problem.However,in some cases the seismic geophones receive some erratic disturbances and the amplitudes are dramatically larger than other receivers.The presence of this kind of noise,called erratic noise,makes singular spectrum analysis(SSA)reconstruction unstable and has undesirable effects on the final results.We robustify the low-rank reconstruction of seismic data by a reweighted damped SSA(RD-SSA)method.It incorporates the damped SSA,an improved version of SSA,into a reweighted framework.The damping operator is used to weaken the artificial disturbance introduced by the low-rank projection of both erratic and random noise.The central idea of the RD-SSA method is to iteratively approximate the observed data with the quadratic norm for the first iteration and the Tukeys bisquare norm for the rest iterations.The RD-SSA method can suppress seismic incoherent noise and keep the reconstruction process robust to the erratic disturbance.The feasibility of RD-SSA is validated via both synthetic and field data examples.展开更多
Singular spectrum analysis is widely used in geodetic time series analysis.However,when extracting time-varying periodic signals from a large number of Global Navigation Satellite System(GNSS)time series,the selection...Singular spectrum analysis is widely used in geodetic time series analysis.However,when extracting time-varying periodic signals from a large number of Global Navigation Satellite System(GNSS)time series,the selection of appropriate embedding window size and principal components makes this method cumbersome and inefficient.To improve the efficiency and accuracy of singular spectrum analysis,this paper proposes an adaptive singular spectrum analysis method by combining spectrum analysis with a new trace matrix.The running time and correlation analysis indicate that the proposed method can adaptively set the embedding window size to extract the time-varying periodic signals from GNSS time series,and the extraction efficiency of a single time series is six times that of singular spectrum analysis.The method is also accurate and more suitable for time-varying periodic signal analysis of global GNSS sites.展开更多
The uncertainty of nuclide libraries in the analysis of the gamma spectra of low-and intermediate-level radioactive waste(LILW)using existing methods produces unstable results.To address this problem,a novel spectral ...The uncertainty of nuclide libraries in the analysis of the gamma spectra of low-and intermediate-level radioactive waste(LILW)using existing methods produces unstable results.To address this problem,a novel spectral analysis method is proposed in this study.In this method,overlapping peaks are located using a continuous wavelet transform.An improved quadratic convolution method is proposed to calculate the widths of the peaks and establish a fourth-order filter model to estimate the Compton edge baseline with the overlapping peaks.Combined with the adaptive sensitive nonlinear iterative peak,this method can effectively subtracts the background.Finally,a function describing the peak shape as a filter is used to deconvolve the energy spectrum to achieve accurate qualitative and quantitative analyses of the nuclide without the aid of a nuclide library.Gamma spectrum acquisition experiments for standard point sources of Cs-137 and Eu-152,a segmented gamma scanning experiment for a 200 L standard drum,and a Monte Carlo simulation experiment for triple overlapping peaks using the closest energy of three typical LILW nuclides(Sb-125,Sb-124,and Cs-134)are conducted.The results of the experiments indicate that(1)the novel method and gamma vision(GV)with an accurate nuclide library have the same spectral analysis capability,and the peak area calculation error is less than 4%;(2)compared with the GV,the analysis results of the novel method are more stable;(3)the novel method can be applied to the activity measurement of LILW,and the error of the activity reconstruction at the equivalent radius is 2.4%;and(4)The proposed novel method can quantitatively analyze all nuclides in LILW without a nuclide library.This novel method can improve the accuracy and precision of LILW measurements,provide key technical support for the reasonable disposal of LILW,and ensure the safety of humans and the environment.展开更多
Viscoelastic damper is an effective passive damping device,which can reduce the seismic response of the structure by increasing the damping and dissipating the vibration energy of structures.It has a wide application ...Viscoelastic damper is an effective passive damping device,which can reduce the seismic response of the structure by increasing the damping and dissipating the vibration energy of structures.It has a wide application prospect in actual structural vibration control because of simple device and economical material.In view of the poor seismic behaviors of assembled frame structure connections,various energy dissipation devices are proposed to improve the seismic performance.The finite element numerical analysis method is adopted to analyze relevant energy dissipation structural parameters.The response spectrum of a 7-story assembled frame structure combined the ordinary steel support,ordinary viscoelastic damper,and viscoelastic damper with displacement amplification device is analyzed.The analysis results show that the mechanical behavior of assembled frame structure with ordinary steel supports are not significantly different from those without energy dissipation devices.The assembled frame structure with viscoelastic damper has better seismic performance and energy dissipation,especially for the viscoelastic damper with displacement amplification devices.The maximum value of inter-story displacement angle decreases by 32.24%;the maximum floor displacement decreases by 31.91%,and the base shear decreases by 13.62%compared with the assembled frame structures without energy dissipation devices.The results show that the seismic fortification ability of the structure is significantly improved,and the overall structure is more uniformly stressed.The damping structure with viscoelastic damper mainly reduces the dynamic response of the structure by increasing the damping coefficient,rather than by changing the natural vibration period of the structure.This paper provides an effective theoretical basis and reference for improving the energy dissipation system and the seismic performance of assembled frame structures.展开更多
The power output state of photovoltaic power generation is affected by the earth’s rotation and solar radiation intensity.On the one hand,its output sequence has daily periodicity;on the other hand,it has discrete ra...The power output state of photovoltaic power generation is affected by the earth’s rotation and solar radiation intensity.On the one hand,its output sequence has daily periodicity;on the other hand,it has discrete randomness.With the development of new energy economy,the proportion of photovoltaic energy increased accordingly.In order to solve the problem of improving the energy conversion efficiency in the grid-connected optical network and ensure the stability of photovoltaic power generation,this paper proposes the short-termprediction of photovoltaic power generation based on the improvedmulti-scale permutation entropy,localmean decomposition and singular spectrum analysis algorithm.Firstly,taking the power output per unit day as the research object,the multi-scale permutation entropy is used to calculate the eigenvectors under different weather conditions,and the cluster analysis is used to reconstruct the historical power generation under typical weather rainy and snowy,sunny,abrupt,cloudy.Then,local mean decomposition(LMD)is used to decompose the output sequence,so as to extract more detail components of the reconstructed output sequence.Finally,combined with the weather forecast of the Meteorological Bureau for the next day,the singular spectrumanalysis algorithm is used to predict the photovoltaic classification of the recombination decomposition sequence under typical weather.Through the verification and analysis of examples,the hierarchical prediction experiments of reconstructed and non-reconstructed output sequences are compared.The results show that the algorithm proposed in this paper is effective in realizing the short-term prediction of photovoltaic generator,and has the advantages of simple structure and high prediction accuracy.展开更多
The effects of ground motion spatial variability(GMSV)or fluid-structure interaction(FSI)on the seismic responses of deep-water bridges have been extensively examined.However,there are few studies on the seismic perfo...The effects of ground motion spatial variability(GMSV)or fluid-structure interaction(FSI)on the seismic responses of deep-water bridges have been extensively examined.However,there are few studies on the seismic performance of bridges considering GMSV and FSI effects simultaneously.In this study,the original multiple-support response spectrum(MSRS)method is extended to consider FSI effect for seismic analysis of deep-water bridges.The solution of hydrodynamic pressure on a pier is obtained using the radiation wave theory,and the FSI-MSRS formulation is derived according to the random vibration theory.The influence of FSI effect on the related coefficients is analyzed.A five-span steel-concrete continuous beam bridge is adopted to conduct the numerical simulations.Different load conditions are designed to investigate the variation of the bridge responses when considering the GMSV and FSI effects.The results indicate that the incoherence effect and wave passage effect decrease the bridge responses with a maximum percentage of 86%,while the FSI effect increases the responses with a maximum percentage of 26%.The GMSV and FSI effects should be included in the seismic design of deep-water bridges.展开更多
Dispersion and attenuation analysis can be used to determine formation anisotropy induced by fractures,or stresses.In this paper,we propose a nonparametric spectrum estimation method to get phase dispersion characteri...Dispersion and attenuation analysis can be used to determine formation anisotropy induced by fractures,or stresses.In this paper,we propose a nonparametric spectrum estimation method to get phase dispersion characteristics and attenuation coefficient.By designing an appropriate vector filter,phase velocity,attenuation coefficient and amplitude can be inverted from the waveform recorded by the receiver array.Performance analysis of this algorithm is compared with Extended Prony Method(EPM)and Forward and Backward Matrix Pencil(FBMP)method.Based on the analysis results,the proposed method is capable of achieving high resolution and precision as the parametric spectrum estimation methods.At the meantime,it also keeps high stability as the other nonparametric spectrum estimation methods.At last,applications to synthetic waveforms modeled using finite difference method and real data show its efficiency.The real data processing results show that the P-wave attenuation log is more sensitive to oil formation compared to S-wave;and the S-wave attenuation log is more sensitive to shale formation compared to P-wave.展开更多
As a new promising detection technology in the terahertz research field,the terahertz time-domain spec-troscopy(THz-TDS)has very broad application potential in many fields because its advantage on the characteristic s...As a new promising detection technology in the terahertz research field,the terahertz time-domain spec-troscopy(THz-TDS)has very broad application potential in many fields because its advantage on the characteristic spectrum,wide spectrum and non-destructive analysis of interested substances.In this paper,the terahertz absorption spectra of gases mixed with 12 CO and 13 CO in the spec-trum range of 0.5–2.5 THz are measured by terahertz time-domain spectroscopy for the first time.Several isotopo-logues can be clearly distinguished based on the difference in their rotational energies and the consequent terahertz spectrum.The experimental results show that 12 CO and 13 CO have obvious characteristic absorption peaks in the spectrum range of 0.5–2.5 THz due to the difference in rotational energy,and the rotational constant B can be calculated according to the experimental values to distin-guish the two gaseous isotopologues.The frequency posi-tions of the characteristic absorption peak measured by this experiment and the rotation constant B calculated accord-ing to the experimental values are compared with those previous theoretical calculations and experimental results,and they are in good agreement.This result lays a foun-dation for developing more sophisticated terahertz instru-ments to the detection of different isotopologues.展开更多
Immune changes and inflammatory responses have been identified as central events in the pathological process of spinal co rd injury.They can greatly affect nerve regeneration and functional recovery.However,there is s...Immune changes and inflammatory responses have been identified as central events in the pathological process of spinal co rd injury.They can greatly affect nerve regeneration and functional recovery.However,there is still limited understanding of the peripheral immune inflammato ry response in spinal cord inju ry.In this study.we obtained microRNA expression profiles from the peripheral blood of patients with spinal co rd injury using high-throughput sequencing.We also obtained the mRNA expression profile of spinal cord injury patients from the Gene Expression Omnibus(GEO)database(GSE151371).We identified 54 differentially expressed microRNAs and 1656 diffe rentially expressed genes using bioinformatics approaches.Functional enrichment analysis revealed that various common immune and inflammation-related signaling pathways,such as neutrophil extracellular trap formation pathway,T cell receptor signaling pathway,and nuclear factor-κB signal pathway,we re abnormally activated or inhibited in spinal cord inju ry patient samples.We applied an integrated strategy that combines weighted gene co-expression network analysis,LASSO logistic regression,and SVM-RFE algorithm and identified three biomarke rs associated with spinal cord injury:ANO10,BST1,and ZFP36L2.We verified the expression levels and diagnostic perfo rmance of these three genes in the original training dataset and clinical samples through the receiver operating characteristic curve.Quantitative polymerase chain reaction results showed that ANO20 and BST1 mRNA levels were increased and ZFP36L2 mRNA was decreased in the peripheral blood of spinal cord injury patients.We also constructed a small RNA-mRNA interaction network using Cytoscape.Additionally,we evaluated the proportion of 22 types of immune cells in the peripheral blood of spinal co rd injury patients using the CIBERSORT tool.The proportions of naive B cells,plasma cells,monocytes,and neutrophils were increased while the proportions of memory B cells,CD8^(+)T cells,resting natural killer cells,resting dendritic cells,and eosinophils were markedly decreased in spinal cord injury patients increased compared with healthy subjects,and ANO10,BST1 and ZFP26L2we re closely related to the proportion of certain immune cell types.The findings from this study provide new directions for the development of treatment strategies related to immune inflammation in spinal co rd inju ry and suggest that ANO10,BST2,and ZFP36L2 are potential biomarkers for spinal cord injury.The study was registe red in the Chinese Clinical Trial Registry(registration No.ChiCTR2200066985,December 12,2022).展开更多
Background In early adolescence,youth are highly prone to suicidal behaviours.Identifying modifiable risk factors during this critical phase is a priority to inform effective suicide prevention strategies.Aims To expl...Background In early adolescence,youth are highly prone to suicidal behaviours.Identifying modifiable risk factors during this critical phase is a priority to inform effective suicide prevention strategies.Aims To explore the risk and protective factors of suicidal behaviours(ie,suicidal ideation,plans and attempts)in early adolescence in China using a social-ecological perspective.Methods Using data from the cross-sectional project‘Healthy and Risky Behaviours Among Middle School Students in Anhui Province,China',stratified random cluster sampling was used to select 5724 middle school students who had completed self-report questionnaires in November 2020.Network analysis was employed to examine the correlates of suicidal ideation,plans and attempts at four levels,namely individual(sex,academic performance,serious physical llness/disability,history of self-harm,depression,impulsivity,sleep problems,resilience),family(family economic status,relationship with mother,relationship with father,family violence,childhood abuse,parental mental illness),school(relationship with teachers,relationship with classmates,school-bullying victimisation and perpetration)and social(social support,satisfaction with society).Results In total,37.9%,19.0%and 5.5%of the students reported suicidal ideation,plans and attempts in the past 6 months,respectively.The estimated network revealed that suicidal ideation,plans and attempts were collectively associated with a history of self-harm,sleep problems,childhood abuse,school bullying and victimisation.Centrality analysis indicated that the most influential nodes in the network were history of self-harm and childhood abuse.Notably,the network also showed unique correlates of suicidal ideation(sex,weight=0.60;impulsivity,weight=0.24;family violence,weight=0.17;relationship with teachers,weight=-0.03;school-bullying perpetration,weight=0.22),suicidal plans(social support,weight=-0.15)and suicidal attempts(relationship with mother,weight=-0.10;parental mental llness,weight=0.61).Conclusions This study identified the correlates of suicidal ideation,plans and attempts,and provided practical implications for suicide prevention for young adolescents in China.Firstly,this study highlighted the importance of joint interventions across multiple departments.Secondly,the common risk factors of suicidal ideation,plans and attempts were elucidated.Thirdly,this study proposed target interventions to address the unique influencing factors of suicidal ideation,plans and attempts.展开更多
Strict requirement of a coherent spectrum in coherent diffractive imaging(CDI)architectures poses a significant obstacle to achieving efficient photon utilization across the full spectrum.To date,nearly all broadband ...Strict requirement of a coherent spectrum in coherent diffractive imaging(CDI)architectures poses a significant obstacle to achieving efficient photon utilization across the full spectrum.To date,nearly all broadband computational imaging experiments have relied on accurate spectroscopic measurements,as broad spectra are incompatible with conventional CDI systems.This paper presents an advanced approach to broaden the scope of CDI to ultra-broadband illumination with unknown probe spectrum,effectively addresses the key challenges encountered by existing state-ofthe-art broadband diffractive imaging frameworks.This advancement eliminates the necessity for prior knowledge of probe spectrum and relaxes constraints on non-dispersive samples,resulting in a significant extension in spectral bandwidth,achieving a nearly fourfold improvement in bandlimit compared to the existing benchmark.Our method not only monochromatizes a broadband diffraction pattern from unknown illumination spectrum,but also determines the compressive sampled profile of spectrum of the diffracted radiation.This superiority is experimentally validated using both CDI and ptychography techniques on an ultra-broadband supercontinuum with relative bandwidth exceeding 40%,revealing a significantly enhanced coherence and improved reconstruction with high fidelity under ultra-broadband illumination.展开更多
Lithium-ion batteries have extensive usage in various energy storage needs,owing to their notable benefits of high energy density and long lifespan.The monitoring of battery states and failure identification are indis...Lithium-ion batteries have extensive usage in various energy storage needs,owing to their notable benefits of high energy density and long lifespan.The monitoring of battery states and failure identification are indispensable for guaranteeing the secure and optimal functionality of the batteries.The impedance spectrum has garnered growing interest due to its ability to provide a valuable understanding of material characteristics and electrochemical processes.To inspire further progress in the investigation and application of the battery impedance spectrum,this paper provides a comprehensive review of the determination and utilization of the impedance spectrum.The sources of impedance inaccuracies are systematically analyzed in terms of frequency response characteristics.The applicability of utilizing diverse impedance features for the diagnosis and prognosis of batteries is further elaborated.Finally,challenges and prospects for future research are discussed.展开更多
DNA methylation has been extensively investigated in recent years,not least because of its known relationship with various diseases.Progress in analytical methods can greatly increase the relevance of DNA methylation ...DNA methylation has been extensively investigated in recent years,not least because of its known relationship with various diseases.Progress in analytical methods can greatly increase the relevance of DNA methylation studies to both clinical medicine and scientific research.Microflu-idic chips are excellent carriers for molecular analysis,and their use can provide improvements from multiple aspects.On-chip molecular analysis has received extensive attention owing to its advantages of portability,high throughput,low cost,and high efficiency.In recent years,the use of novel microfluidic chips for DNA methylation analysis has been widely reported and has shown obvious superiority to conventional methods.In this review,wefirst focus on DNA methylation and its applications.Then,we discuss advanced microfluidic-based methods for DNA methylation analysis and describe the great progress that has been made in recent years.Finally,we summarize the advantages that microfluidic technology brings to DNA methylation analysis and describe several challenges and perspectives for on-chip DNA methylation analysis.This review should help researchers improve their understanding and make progress in developing microfluidic-based methods for DNA methylation analysis.展开更多
Neuromyelitis optica is an inflammatory demyelinating disease of the central nervous system that differs from multiple sclerosis.Over the past 20 years,the search for biomarke rs for neuromyelitis optica has been ongo...Neuromyelitis optica is an inflammatory demyelinating disease of the central nervous system that differs from multiple sclerosis.Over the past 20 years,the search for biomarke rs for neuromyelitis optica has been ongoing.Here,we used a bibliometric approach to analyze the main research focus in the field of biomarkers for neuromyelitis optica.Research in this area is consistently increasing,with China and the United States leading the way on the number of studies conducted.The Mayo Clinic is a highly reputable institution in the United States,and was identified as the most authoritative institution in this field.Furthermore,Professor Wingerchuk from the Mayo Clinic was the most authoritative expe rt in this field.Keyword analysis revealed that the terms "neuro myelitis optica"(261 times), "multiple sclerosis"(220 times), "neuromyelitis optica spectrum disorder"(132 times), "aquaporin4"(99 times),and "optical neuritis"(87 times) were the most frequently used keywords in literature related to this field.Comprehensive analysis of the classical literature showed that the majority of publications provide conclusive research evidence supporting the use of aquaporin-4-IgG and neuromyelitis optica-IgG to effectively diagnose and differentiate neuromyelitis optica from multiple sclerosis.Furthermore,aquaporin-4-IgG has emerged as a highly specific diagnostic biomarker for neuromyelitis optica spectrum disorder.Myelin oligodendrocyte glycoprotein-IgG is a diagnostic biomarke r for myelin oligodendrocyte glycoprotein antibody-associated disease.Recent biomarkers for neuromyelitis optica in clude cerebrospinal fluid immunological biomarkers such as glial fibrillary acidic protein,serum astrocyte damage biomarkers like FAM19A5,serum albumin,and gammaaminobutyric acid.The latest prospective clinical trials are exploring the potential of these biomarkers.Preliminary results indicate that glial fibrillary acidic protein is emerging as a promising candidate biomarker for neuromyelitis optica spectrum disorder.The ultimate goal of future research is to identify non-invasive biomarkers with high sensitivity,specificity,and safety for the accurate diagnosis of neuro myelitis optica.展开更多
Condensed and hydrolysable tannins are non-toxic natural polyphenols that are a commercial commodity industrialized for tanning hides to obtain leather and for a growing number of other industrial applications mainly ...Condensed and hydrolysable tannins are non-toxic natural polyphenols that are a commercial commodity industrialized for tanning hides to obtain leather and for a growing number of other industrial applications mainly to substitute petroleum-based products.They are a definite class of sustainable materials of the forestry industry.They have been in operation for hundreds of years to manufacture leather and now for a growing number of applications in a variety of other industries,such as wood adhesives,metal coating,pharmaceutical/medical applications and several others.This review presents the main sources,either already or potentially commercial of this forestry by-materials,their industrial and laboratory extraction systems,their systems of analysis with their advantages and drawbacks,be these methods so simple to even appear primitive but nonetheless of proven effectiveness,or very modern and instrumental.It constitutes a basic but essential summary of what is necessary to know of these sustainable materials.In doing so,the review highlights some of the main challenges that remain to be addressed to deliver the quality and economics of tannin supply necessary to fulfill the industrial production requirements for some materials-based uses.展开更多
The Electron Cyclotron Resonance(ECR)ion source is a critical device for producing highly charged ion beams in various applications.Analyzing the charge-state distribution of the ion beams is essential,but the manual ...The Electron Cyclotron Resonance(ECR)ion source is a critical device for producing highly charged ion beams in various applications.Analyzing the charge-state distribution of the ion beams is essential,but the manual analysis is labor-intensive and prone to inaccuracies due to impurity ions.An automatic spectrum recognition system based on intelligent algorithms was proposed for rapid and accurate chargestate analysis of ECR ion sources.The system employs an adaptive window-length Savitzky-Golay(SG)filtering algorithm,an improved automatic multiscale peak detection(AMPD)algorithm,and a greedy matching algorithm based on the relative distance to accurately match different peaks in the spectra with the corresponding charge-state ion species.Additionally,a user-friendly operator interface was developed for ease of use.Extensive testing on the online ECR ion source platform demonstrates that the system achieves high accuracy,with an average root mean square error of less than 0.1 A for identifying charge-state spectra of ECR ion sources.Moreover,the system minimizes the stand-ard deviation of the first-order derivative of the smoothed signal to 81.1846 A.These results indicate the capability of the designed system to identify ion beam spectra with mass numbers less than Xe,including Xe itself.The proposed automatic spectrum recognition system represents a significant advancement in ECR ion source analysis,offering a rapid and accurate approach for charge-state analysis while enhancing supply efficiency.The exceptional performance and successful imple-mentation of the proposed system on multiple ECR ion source platforms at IMPCAS highlight its potential for widespread adoption in ECR ion source research and applications.展开更多
Cadmium(Cd)contamination in rice has been a serious threat to human health.To investigate the effects of arbuscular mycorrhizal fungi(AMF)on the Cd translocation in rice,a controlled pot experiment was conducted.The r...Cadmium(Cd)contamination in rice has been a serious threat to human health.To investigate the effects of arbuscular mycorrhizal fungi(AMF)on the Cd translocation in rice,a controlled pot experiment was conducted.The results indicated that AMF significantly increased rice biomass,with an increase of up to 40.0%,particularly in root biomass by up to 68.4%.Notably,the number of prominent rice individuals also increased,and their plasticity was enhanced following AMF inoculation.AMF led to an increase in the net photosynthetic rate and antioxidant enzyme activity of rice.In the AMF treatment group,the Cd concentration in the rice roots was significantly higher(19.1%‒68.0%)compared with that in the control group.Conversely,the Cd concentration in the rice seeds was lower in the AMF treatment group,indicating that AMF facilitated the sequestration of Cd in rice roots and reduced Cd accumulation in the seeds.Path coefficients varied across different treatments,suggesting that AMF inoculation reduced the direct impact of soil Cd concentration on the total Cd accumulation in seeds.The translocation of Cd was consistently associated with simultaneous growth dilution and compensatory accumulation as a result of mycorrhizal effects.Our study quantitatively analyzed this process through path analysis and clarified the causal relationship between rice growth and Cd transfer under the influence of AMF.展开更多
Spatial heterogeneity or“patchiness”of plankton distributions in the ocean has always been an attractive and challenging scientific issue to oceanographers.We focused on the accumulation and dynamic mechanism of the...Spatial heterogeneity or“patchiness”of plankton distributions in the ocean has always been an attractive and challenging scientific issue to oceanographers.We focused on the accumulation and dynamic mechanism of the Acetes chinensis in the Lianyungang nearshore licensed fishing area.The Lagrangian frame approaches including the Lagrangian coherent structures theory,Lagrangian residual current,and Lagrangian particle-tracking model were applied to find the transport pathways and aggregation characteristics of Acetes chinensis.There exist some material transport pathways for Acetes chinensis passing through the licensed fishing area,and Acetes chinensis is easy to accumulate in the licensed fishing area.The main mechanism forming this distribution pattern is the local circulation induced by the nonlinear interaction of topography and tidal flow.Both the Lagrangian coherent structure analysis and the particle trajectory tracking indicate that Acetes chinensis in the licensed fishing area come from the nearshore estuary.This work contributed to the adjustment of licensed fishing area and the efficient utilization of fishery resources.展开更多
Language difficulties vary widely among people with autism spectrum disorder(ASD).However,the semantic processing of autistic person and its underlying electrophysiological mechanism are still unclear.This meta-analys...Language difficulties vary widely among people with autism spectrum disorder(ASD).However,the semantic processing of autistic person and its underlying electrophysiological mechanism are still unclear.This meta-analysis aimed to explore the disturbance of semantic processing in patients with ASD.PubMed,Web of Science,and Embase were searched for eventrelated potential(ERP)studies on semantic processing in autistic people published in English before September 01,2022.Pooled estimates were calculated by fixed-effects or random-effects models according to the heterogeneity using Comprehensive Meta-Analysis 2.0.The potential moderators were explored by meta-regression and subgroup analysis.This meta-analysis has been registered at the Prospero International Prospective Register of Systematic Reviews(no.CRD 42021265852).A total of 14 articles and 18 studies,including 254 autistic people and 262 neurodevelopmental people were included in this meta-analysis.Compared to the comparison group,autistic people showed an overall reduced N400 amplitude(Hedges’g=0.350,p<0.001)in response to linguistic stimuli instead of non-linguistic stimuli.The N400 amplitude was affected by verbal intelligence and gender.The reduced overall N400 amplitude in autistic people under linguistic stimuli suggests a linguistic-specific deficit in semantic processing in individuals of autism.The decrease of N400 amplitude might be a promising indication of the pool language capacity of autism.展开更多
BACKGROUND The effect of serum iron or ferritin parameters on mortality among critically ill patients is not well characterized.AIM To determine the association between serum iron or ferritin parameters and mortality ...BACKGROUND The effect of serum iron or ferritin parameters on mortality among critically ill patients is not well characterized.AIM To determine the association between serum iron or ferritin parameters and mortality among critically ill patients.METHODS Web of Science,Embase,PubMed,and Cochrane Library databases were searched for studies on serum iron or ferritin parameters and mortality among critically ill patients.Two reviewers independently assessed,selected,and abstracted data from studies reporting on serum iron or ferritin parameters and mortality among critically ill patients.Data on serum iron or ferritin levels,mortality,and demographics were extracted.RESULTS Nineteen studies comprising 125490 patients were eligible for inclusion.We observed a slight negative effect of serum ferritin on mortality in the United States population[relative risk(RR)1.002;95%CI:1.002-1.004].In patients with sepsis,serum iron had a significant negative effect on mortality(RR=1.567;95%CI:1.208-1.925).CONCLUSION This systematic review presents evidence of a negative correlation between serum iron levels and mortality among patients with sepsis.Furthermore,it reveals a minor yet adverse impact of serum ferritin on mortality among the United States population.展开更多
基金supported by the National Natural Science Foundation of China under grant no.42374133the Beijing Nova Program under grant no.2022056+1 种基金the Fundamental Research Funds for the Central Universities under grant no.2462020YXZZ006the Young Elite Scientists Sponsorship Program by CAST(YESS)under grant no.2018QNRC001。
文摘(Multichannel)Singular spectrum analysis is considered as one of the most effective methods for seismic incoherent noise suppression.It utilizes the low-rank feature of seismic signal and regards the noise suppression as a low-rank reconstruction problem.However,in some cases the seismic geophones receive some erratic disturbances and the amplitudes are dramatically larger than other receivers.The presence of this kind of noise,called erratic noise,makes singular spectrum analysis(SSA)reconstruction unstable and has undesirable effects on the final results.We robustify the low-rank reconstruction of seismic data by a reweighted damped SSA(RD-SSA)method.It incorporates the damped SSA,an improved version of SSA,into a reweighted framework.The damping operator is used to weaken the artificial disturbance introduced by the low-rank projection of both erratic and random noise.The central idea of the RD-SSA method is to iteratively approximate the observed data with the quadratic norm for the first iteration and the Tukeys bisquare norm for the rest iterations.The RD-SSA method can suppress seismic incoherent noise and keep the reconstruction process robust to the erratic disturbance.The feasibility of RD-SSA is validated via both synthetic and field data examples.
基金supported by the National Natural Science Foundation of China(Grants:42204006,42274053,42030105,and 41504031)the Open Research Fund Program of the Key Laboratory of Geospace Environment and Geodesy,Ministry of Education,China(Grants:20-01-03 and 21-01-04)。
文摘Singular spectrum analysis is widely used in geodetic time series analysis.However,when extracting time-varying periodic signals from a large number of Global Navigation Satellite System(GNSS)time series,the selection of appropriate embedding window size and principal components makes this method cumbersome and inefficient.To improve the efficiency and accuracy of singular spectrum analysis,this paper proposes an adaptive singular spectrum analysis method by combining spectrum analysis with a new trace matrix.The running time and correlation analysis indicate that the proposed method can adaptively set the embedding window size to extract the time-varying periodic signals from GNSS time series,and the extraction efficiency of a single time series is six times that of singular spectrum analysis.The method is also accurate and more suitable for time-varying periodic signal analysis of global GNSS sites.
基金supported by the National Natural Science Foundation of China(Nos.12205190,11805121)the Science and Technology Commission of Shanghai Municipality(No.21ZR1435400).
文摘The uncertainty of nuclide libraries in the analysis of the gamma spectra of low-and intermediate-level radioactive waste(LILW)using existing methods produces unstable results.To address this problem,a novel spectral analysis method is proposed in this study.In this method,overlapping peaks are located using a continuous wavelet transform.An improved quadratic convolution method is proposed to calculate the widths of the peaks and establish a fourth-order filter model to estimate the Compton edge baseline with the overlapping peaks.Combined with the adaptive sensitive nonlinear iterative peak,this method can effectively subtracts the background.Finally,a function describing the peak shape as a filter is used to deconvolve the energy spectrum to achieve accurate qualitative and quantitative analyses of the nuclide without the aid of a nuclide library.Gamma spectrum acquisition experiments for standard point sources of Cs-137 and Eu-152,a segmented gamma scanning experiment for a 200 L standard drum,and a Monte Carlo simulation experiment for triple overlapping peaks using the closest energy of three typical LILW nuclides(Sb-125,Sb-124,and Cs-134)are conducted.The results of the experiments indicate that(1)the novel method and gamma vision(GV)with an accurate nuclide library have the same spectral analysis capability,and the peak area calculation error is less than 4%;(2)compared with the GV,the analysis results of the novel method are more stable;(3)the novel method can be applied to the activity measurement of LILW,and the error of the activity reconstruction at the equivalent radius is 2.4%;and(4)The proposed novel method can quantitatively analyze all nuclides in LILW without a nuclide library.This novel method can improve the accuracy and precision of LILW measurements,provide key technical support for the reasonable disposal of LILW,and ensure the safety of humans and the environment.
基金supported by Foundation of Henan Educational Committee(20A560004,J.Z.)Foundation of Henan Science and Technology Project(182102311086,Y.W.)Foundation for University Key Teacher(YCJQNGGJS201901,J.Z.,YCJXSJSDTR201801,Y.W.,Henan University of Urban Construction).
文摘Viscoelastic damper is an effective passive damping device,which can reduce the seismic response of the structure by increasing the damping and dissipating the vibration energy of structures.It has a wide application prospect in actual structural vibration control because of simple device and economical material.In view of the poor seismic behaviors of assembled frame structure connections,various energy dissipation devices are proposed to improve the seismic performance.The finite element numerical analysis method is adopted to analyze relevant energy dissipation structural parameters.The response spectrum of a 7-story assembled frame structure combined the ordinary steel support,ordinary viscoelastic damper,and viscoelastic damper with displacement amplification device is analyzed.The analysis results show that the mechanical behavior of assembled frame structure with ordinary steel supports are not significantly different from those without energy dissipation devices.The assembled frame structure with viscoelastic damper has better seismic performance and energy dissipation,especially for the viscoelastic damper with displacement amplification devices.The maximum value of inter-story displacement angle decreases by 32.24%;the maximum floor displacement decreases by 31.91%,and the base shear decreases by 13.62%compared with the assembled frame structures without energy dissipation devices.The results show that the seismic fortification ability of the structure is significantly improved,and the overall structure is more uniformly stressed.The damping structure with viscoelastic damper mainly reduces the dynamic response of the structure by increasing the damping coefficient,rather than by changing the natural vibration period of the structure.This paper provides an effective theoretical basis and reference for improving the energy dissipation system and the seismic performance of assembled frame structures.
文摘The power output state of photovoltaic power generation is affected by the earth’s rotation and solar radiation intensity.On the one hand,its output sequence has daily periodicity;on the other hand,it has discrete randomness.With the development of new energy economy,the proportion of photovoltaic energy increased accordingly.In order to solve the problem of improving the energy conversion efficiency in the grid-connected optical network and ensure the stability of photovoltaic power generation,this paper proposes the short-termprediction of photovoltaic power generation based on the improvedmulti-scale permutation entropy,localmean decomposition and singular spectrum analysis algorithm.Firstly,taking the power output per unit day as the research object,the multi-scale permutation entropy is used to calculate the eigenvectors under different weather conditions,and the cluster analysis is used to reconstruct the historical power generation under typical weather rainy and snowy,sunny,abrupt,cloudy.Then,local mean decomposition(LMD)is used to decompose the output sequence,so as to extract more detail components of the reconstructed output sequence.Finally,combined with the weather forecast of the Meteorological Bureau for the next day,the singular spectrumanalysis algorithm is used to predict the photovoltaic classification of the recombination decomposition sequence under typical weather.Through the verification and analysis of examples,the hierarchical prediction experiments of reconstructed and non-reconstructed output sequences are compared.The results show that the algorithm proposed in this paper is effective in realizing the short-term prediction of photovoltaic generator,and has the advantages of simple structure and high prediction accuracy.
基金National Natural Science Foundation of China under Grant Nos.51427901 and 51678407Tianjin Municipal Education Commission under Grant No.2021KJ055Fundamental Research Funds for the Central Universities of China under Grant No.2000560616。
文摘The effects of ground motion spatial variability(GMSV)or fluid-structure interaction(FSI)on the seismic responses of deep-water bridges have been extensively examined.However,there are few studies on the seismic performance of bridges considering GMSV and FSI effects simultaneously.In this study,the original multiple-support response spectrum(MSRS)method is extended to consider FSI effect for seismic analysis of deep-water bridges.The solution of hydrodynamic pressure on a pier is obtained using the radiation wave theory,and the FSI-MSRS formulation is derived according to the random vibration theory.The influence of FSI effect on the related coefficients is analyzed.A five-span steel-concrete continuous beam bridge is adopted to conduct the numerical simulations.Different load conditions are designed to investigate the variation of the bridge responses when considering the GMSV and FSI effects.The results indicate that the incoherence effect and wave passage effect decrease the bridge responses with a maximum percentage of 86%,while the FSI effect increases the responses with a maximum percentage of 26%.The GMSV and FSI effects should be included in the seismic design of deep-water bridges.
基金This research was supported by the National Natural Science Foundation of China(No.42274141)Science Foundation of China University of Petroleum,Beijing(No.2462020YXZZ007).
文摘Dispersion and attenuation analysis can be used to determine formation anisotropy induced by fractures,or stresses.In this paper,we propose a nonparametric spectrum estimation method to get phase dispersion characteristics and attenuation coefficient.By designing an appropriate vector filter,phase velocity,attenuation coefficient and amplitude can be inverted from the waveform recorded by the receiver array.Performance analysis of this algorithm is compared with Extended Prony Method(EPM)and Forward and Backward Matrix Pencil(FBMP)method.Based on the analysis results,the proposed method is capable of achieving high resolution and precision as the parametric spectrum estimation methods.At the meantime,it also keeps high stability as the other nonparametric spectrum estimation methods.At last,applications to synthetic waveforms modeled using finite difference method and real data show its efficiency.The real data processing results show that the P-wave attenuation log is more sensitive to oil formation compared to S-wave;and the S-wave attenuation log is more sensitive to shale formation compared to P-wave.
基金supported by Chinese NSF project(42130114)the strategic priority research program(B)of CAS(XDB41000000)the pre-research Project on Civil Aerospace Technologies No.D020202 funded by Chinese National Space Administration(CNSA).
文摘As a new promising detection technology in the terahertz research field,the terahertz time-domain spec-troscopy(THz-TDS)has very broad application potential in many fields because its advantage on the characteristic spectrum,wide spectrum and non-destructive analysis of interested substances.In this paper,the terahertz absorption spectra of gases mixed with 12 CO and 13 CO in the spec-trum range of 0.5–2.5 THz are measured by terahertz time-domain spectroscopy for the first time.Several isotopo-logues can be clearly distinguished based on the difference in their rotational energies and the consequent terahertz spectrum.The experimental results show that 12 CO and 13 CO have obvious characteristic absorption peaks in the spectrum range of 0.5–2.5 THz due to the difference in rotational energy,and the rotational constant B can be calculated according to the experimental values to distin-guish the two gaseous isotopologues.The frequency posi-tions of the characteristic absorption peak measured by this experiment and the rotation constant B calculated accord-ing to the experimental values are compared with those previous theoretical calculations and experimental results,and they are in good agreement.This result lays a foun-dation for developing more sophisticated terahertz instru-ments to the detection of different isotopologues.
基金supported by the Notional Natural Science Foundation of China,No.81960417 (to JX)Guangxi Key Research and Development Program,No.GuiKeA B20159027 (to JX)the Natural Science Foundation of Guangxi Zhuang Autonomous Region,No.2022GXNSFBA035545 (to YG)。
文摘Immune changes and inflammatory responses have been identified as central events in the pathological process of spinal co rd injury.They can greatly affect nerve regeneration and functional recovery.However,there is still limited understanding of the peripheral immune inflammato ry response in spinal cord inju ry.In this study.we obtained microRNA expression profiles from the peripheral blood of patients with spinal co rd injury using high-throughput sequencing.We also obtained the mRNA expression profile of spinal cord injury patients from the Gene Expression Omnibus(GEO)database(GSE151371).We identified 54 differentially expressed microRNAs and 1656 diffe rentially expressed genes using bioinformatics approaches.Functional enrichment analysis revealed that various common immune and inflammation-related signaling pathways,such as neutrophil extracellular trap formation pathway,T cell receptor signaling pathway,and nuclear factor-κB signal pathway,we re abnormally activated or inhibited in spinal cord inju ry patient samples.We applied an integrated strategy that combines weighted gene co-expression network analysis,LASSO logistic regression,and SVM-RFE algorithm and identified three biomarke rs associated with spinal cord injury:ANO10,BST1,and ZFP36L2.We verified the expression levels and diagnostic perfo rmance of these three genes in the original training dataset and clinical samples through the receiver operating characteristic curve.Quantitative polymerase chain reaction results showed that ANO20 and BST1 mRNA levels were increased and ZFP36L2 mRNA was decreased in the peripheral blood of spinal cord injury patients.We also constructed a small RNA-mRNA interaction network using Cytoscape.Additionally,we evaluated the proportion of 22 types of immune cells in the peripheral blood of spinal co rd injury patients using the CIBERSORT tool.The proportions of naive B cells,plasma cells,monocytes,and neutrophils were increased while the proportions of memory B cells,CD8^(+)T cells,resting natural killer cells,resting dendritic cells,and eosinophils were markedly decreased in spinal cord injury patients increased compared with healthy subjects,and ANO10,BST1 and ZFP26L2we re closely related to the proportion of certain immune cell types.The findings from this study provide new directions for the development of treatment strategies related to immune inflammation in spinal co rd inju ry and suggest that ANO10,BST2,and ZFP36L2 are potential biomarkers for spinal cord injury.The study was registe red in the Chinese Clinical Trial Registry(registration No.ChiCTR2200066985,December 12,2022).
文摘Background In early adolescence,youth are highly prone to suicidal behaviours.Identifying modifiable risk factors during this critical phase is a priority to inform effective suicide prevention strategies.Aims To explore the risk and protective factors of suicidal behaviours(ie,suicidal ideation,plans and attempts)in early adolescence in China using a social-ecological perspective.Methods Using data from the cross-sectional project‘Healthy and Risky Behaviours Among Middle School Students in Anhui Province,China',stratified random cluster sampling was used to select 5724 middle school students who had completed self-report questionnaires in November 2020.Network analysis was employed to examine the correlates of suicidal ideation,plans and attempts at four levels,namely individual(sex,academic performance,serious physical llness/disability,history of self-harm,depression,impulsivity,sleep problems,resilience),family(family economic status,relationship with mother,relationship with father,family violence,childhood abuse,parental mental illness),school(relationship with teachers,relationship with classmates,school-bullying victimisation and perpetration)and social(social support,satisfaction with society).Results In total,37.9%,19.0%and 5.5%of the students reported suicidal ideation,plans and attempts in the past 6 months,respectively.The estimated network revealed that suicidal ideation,plans and attempts were collectively associated with a history of self-harm,sleep problems,childhood abuse,school bullying and victimisation.Centrality analysis indicated that the most influential nodes in the network were history of self-harm and childhood abuse.Notably,the network also showed unique correlates of suicidal ideation(sex,weight=0.60;impulsivity,weight=0.24;family violence,weight=0.17;relationship with teachers,weight=-0.03;school-bullying perpetration,weight=0.22),suicidal plans(social support,weight=-0.15)and suicidal attempts(relationship with mother,weight=-0.10;parental mental llness,weight=0.61).Conclusions This study identified the correlates of suicidal ideation,plans and attempts,and provided practical implications for suicide prevention for young adolescents in China.Firstly,this study highlighted the importance of joint interventions across multiple departments.Secondly,the common risk factors of suicidal ideation,plans and attempts were elucidated.Thirdly,this study proposed target interventions to address the unique influencing factors of suicidal ideation,plans and attempts.
基金the technical support from the Experiment Centre for Advanced Manufacturing and Technology in School of Mechanical Science&Engineering of HUSTsupported by the Natural Science Foundation of China(52130504)+4 种基金Key Research and Development Program of Hubei Province(2021BAA013)Innovation Project of Optics Valley Laboratory(OVL2023PY003)Natural Science Foundation of Hubei Province(2021CFB322)Fundamental Research Funds for the Central Universities(2021XXJS113)Guangdong Basic and Applied Basic Research Foundation(2023A1515030149).
文摘Strict requirement of a coherent spectrum in coherent diffractive imaging(CDI)architectures poses a significant obstacle to achieving efficient photon utilization across the full spectrum.To date,nearly all broadband computational imaging experiments have relied on accurate spectroscopic measurements,as broad spectra are incompatible with conventional CDI systems.This paper presents an advanced approach to broaden the scope of CDI to ultra-broadband illumination with unknown probe spectrum,effectively addresses the key challenges encountered by existing state-ofthe-art broadband diffractive imaging frameworks.This advancement eliminates the necessity for prior knowledge of probe spectrum and relaxes constraints on non-dispersive samples,resulting in a significant extension in spectral bandwidth,achieving a nearly fourfold improvement in bandlimit compared to the existing benchmark.Our method not only monochromatizes a broadband diffraction pattern from unknown illumination spectrum,but also determines the compressive sampled profile of spectrum of the diffracted radiation.This superiority is experimentally validated using both CDI and ptychography techniques on an ultra-broadband supercontinuum with relative bandwidth exceeding 40%,revealing a significantly enhanced coherence and improved reconstruction with high fidelity under ultra-broadband illumination.
文摘Lithium-ion batteries have extensive usage in various energy storage needs,owing to their notable benefits of high energy density and long lifespan.The monitoring of battery states and failure identification are indispensable for guaranteeing the secure and optimal functionality of the batteries.The impedance spectrum has garnered growing interest due to its ability to provide a valuable understanding of material characteristics and electrochemical processes.To inspire further progress in the investigation and application of the battery impedance spectrum,this paper provides a comprehensive review of the determination and utilization of the impedance spectrum.The sources of impedance inaccuracies are systematically analyzed in terms of frequency response characteristics.The applicability of utilizing diverse impedance features for the diagnosis and prognosis of batteries is further elaborated.Finally,challenges and prospects for future research are discussed.
基金support from the National Key R&D Program of China(Grant No.2018YFE0118700)the National Natural Science Foundation of China(NSFC Grant No.62174119)+1 种基金the 111 Project(Grant No.B07014)the Foundation for Talent Scientists of Nanchang Institute for Microtechnology of Tianjin University.
文摘DNA methylation has been extensively investigated in recent years,not least because of its known relationship with various diseases.Progress in analytical methods can greatly increase the relevance of DNA methylation studies to both clinical medicine and scientific research.Microflu-idic chips are excellent carriers for molecular analysis,and their use can provide improvements from multiple aspects.On-chip molecular analysis has received extensive attention owing to its advantages of portability,high throughput,low cost,and high efficiency.In recent years,the use of novel microfluidic chips for DNA methylation analysis has been widely reported and has shown obvious superiority to conventional methods.In this review,wefirst focus on DNA methylation and its applications.Then,we discuss advanced microfluidic-based methods for DNA methylation analysis and describe the great progress that has been made in recent years.Finally,we summarize the advantages that microfluidic technology brings to DNA methylation analysis and describe several challenges and perspectives for on-chip DNA methylation analysis.This review should help researchers improve their understanding and make progress in developing microfluidic-based methods for DNA methylation analysis.
文摘Neuromyelitis optica is an inflammatory demyelinating disease of the central nervous system that differs from multiple sclerosis.Over the past 20 years,the search for biomarke rs for neuromyelitis optica has been ongoing.Here,we used a bibliometric approach to analyze the main research focus in the field of biomarkers for neuromyelitis optica.Research in this area is consistently increasing,with China and the United States leading the way on the number of studies conducted.The Mayo Clinic is a highly reputable institution in the United States,and was identified as the most authoritative institution in this field.Furthermore,Professor Wingerchuk from the Mayo Clinic was the most authoritative expe rt in this field.Keyword analysis revealed that the terms "neuro myelitis optica"(261 times), "multiple sclerosis"(220 times), "neuromyelitis optica spectrum disorder"(132 times), "aquaporin4"(99 times),and "optical neuritis"(87 times) were the most frequently used keywords in literature related to this field.Comprehensive analysis of the classical literature showed that the majority of publications provide conclusive research evidence supporting the use of aquaporin-4-IgG and neuromyelitis optica-IgG to effectively diagnose and differentiate neuromyelitis optica from multiple sclerosis.Furthermore,aquaporin-4-IgG has emerged as a highly specific diagnostic biomarker for neuromyelitis optica spectrum disorder.Myelin oligodendrocyte glycoprotein-IgG is a diagnostic biomarke r for myelin oligodendrocyte glycoprotein antibody-associated disease.Recent biomarkers for neuromyelitis optica in clude cerebrospinal fluid immunological biomarkers such as glial fibrillary acidic protein,serum astrocyte damage biomarkers like FAM19A5,serum albumin,and gammaaminobutyric acid.The latest prospective clinical trials are exploring the potential of these biomarkers.Preliminary results indicate that glial fibrillary acidic protein is emerging as a promising candidate biomarker for neuromyelitis optica spectrum disorder.The ultimate goal of future research is to identify non-invasive biomarkers with high sensitivity,specificity,and safety for the accurate diagnosis of neuro myelitis optica.
文摘Condensed and hydrolysable tannins are non-toxic natural polyphenols that are a commercial commodity industrialized for tanning hides to obtain leather and for a growing number of other industrial applications mainly to substitute petroleum-based products.They are a definite class of sustainable materials of the forestry industry.They have been in operation for hundreds of years to manufacture leather and now for a growing number of applications in a variety of other industries,such as wood adhesives,metal coating,pharmaceutical/medical applications and several others.This review presents the main sources,either already or potentially commercial of this forestry by-materials,their industrial and laboratory extraction systems,their systems of analysis with their advantages and drawbacks,be these methods so simple to even appear primitive but nonetheless of proven effectiveness,or very modern and instrumental.It constitutes a basic but essential summary of what is necessary to know of these sustainable materials.In doing so,the review highlights some of the main challenges that remain to be addressed to deliver the quality and economics of tannin supply necessary to fulfill the industrial production requirements for some materials-based uses.
文摘The Electron Cyclotron Resonance(ECR)ion source is a critical device for producing highly charged ion beams in various applications.Analyzing the charge-state distribution of the ion beams is essential,but the manual analysis is labor-intensive and prone to inaccuracies due to impurity ions.An automatic spectrum recognition system based on intelligent algorithms was proposed for rapid and accurate chargestate analysis of ECR ion sources.The system employs an adaptive window-length Savitzky-Golay(SG)filtering algorithm,an improved automatic multiscale peak detection(AMPD)algorithm,and a greedy matching algorithm based on the relative distance to accurately match different peaks in the spectra with the corresponding charge-state ion species.Additionally,a user-friendly operator interface was developed for ease of use.Extensive testing on the online ECR ion source platform demonstrates that the system achieves high accuracy,with an average root mean square error of less than 0.1 A for identifying charge-state spectra of ECR ion sources.Moreover,the system minimizes the stand-ard deviation of the first-order derivative of the smoothed signal to 81.1846 A.These results indicate the capability of the designed system to identify ion beam spectra with mass numbers less than Xe,including Xe itself.The proposed automatic spectrum recognition system represents a significant advancement in ECR ion source analysis,offering a rapid and accurate approach for charge-state analysis while enhancing supply efficiency.The exceptional performance and successful imple-mentation of the proposed system on multiple ECR ion source platforms at IMPCAS highlight its potential for widespread adoption in ECR ion source research and applications.
基金the National Natural Science Foundation of China(Grant No.52270154)the National Engineering Research Center for Bioenergy,Harbin Institute of Technology,China(Grant No.2021C001).
文摘Cadmium(Cd)contamination in rice has been a serious threat to human health.To investigate the effects of arbuscular mycorrhizal fungi(AMF)on the Cd translocation in rice,a controlled pot experiment was conducted.The results indicated that AMF significantly increased rice biomass,with an increase of up to 40.0%,particularly in root biomass by up to 68.4%.Notably,the number of prominent rice individuals also increased,and their plasticity was enhanced following AMF inoculation.AMF led to an increase in the net photosynthetic rate and antioxidant enzyme activity of rice.In the AMF treatment group,the Cd concentration in the rice roots was significantly higher(19.1%‒68.0%)compared with that in the control group.Conversely,the Cd concentration in the rice seeds was lower in the AMF treatment group,indicating that AMF facilitated the sequestration of Cd in rice roots and reduced Cd accumulation in the seeds.Path coefficients varied across different treatments,suggesting that AMF inoculation reduced the direct impact of soil Cd concentration on the total Cd accumulation in seeds.The translocation of Cd was consistently associated with simultaneous growth dilution and compensatory accumulation as a result of mycorrhizal effects.Our study quantitatively analyzed this process through path analysis and clarified the causal relationship between rice growth and Cd transfer under the influence of AMF.
基金the National Natural Science Foundation of China(No.31802297)。
文摘Spatial heterogeneity or“patchiness”of plankton distributions in the ocean has always been an attractive and challenging scientific issue to oceanographers.We focused on the accumulation and dynamic mechanism of the Acetes chinensis in the Lianyungang nearshore licensed fishing area.The Lagrangian frame approaches including the Lagrangian coherent structures theory,Lagrangian residual current,and Lagrangian particle-tracking model were applied to find the transport pathways and aggregation characteristics of Acetes chinensis.There exist some material transport pathways for Acetes chinensis passing through the licensed fishing area,and Acetes chinensis is easy to accumulate in the licensed fishing area.The main mechanism forming this distribution pattern is the local circulation induced by the nonlinear interaction of topography and tidal flow.Both the Lagrangian coherent structure analysis and the particle trajectory tracking indicate that Acetes chinensis in the licensed fishing area come from the nearshore estuary.This work contributed to the adjustment of licensed fishing area and the efficient utilization of fishery resources.
基金The National Key Research and Development Program of China(Grant Number 2021ZD0202004).
文摘Language difficulties vary widely among people with autism spectrum disorder(ASD).However,the semantic processing of autistic person and its underlying electrophysiological mechanism are still unclear.This meta-analysis aimed to explore the disturbance of semantic processing in patients with ASD.PubMed,Web of Science,and Embase were searched for eventrelated potential(ERP)studies on semantic processing in autistic people published in English before September 01,2022.Pooled estimates were calculated by fixed-effects or random-effects models according to the heterogeneity using Comprehensive Meta-Analysis 2.0.The potential moderators were explored by meta-regression and subgroup analysis.This meta-analysis has been registered at the Prospero International Prospective Register of Systematic Reviews(no.CRD 42021265852).A total of 14 articles and 18 studies,including 254 autistic people and 262 neurodevelopmental people were included in this meta-analysis.Compared to the comparison group,autistic people showed an overall reduced N400 amplitude(Hedges’g=0.350,p<0.001)in response to linguistic stimuli instead of non-linguistic stimuli.The N400 amplitude was affected by verbal intelligence and gender.The reduced overall N400 amplitude in autistic people under linguistic stimuli suggests a linguistic-specific deficit in semantic processing in individuals of autism.The decrease of N400 amplitude might be a promising indication of the pool language capacity of autism.
基金Supported by The National Natural Science Foundation of China,No.82104989.
文摘BACKGROUND The effect of serum iron or ferritin parameters on mortality among critically ill patients is not well characterized.AIM To determine the association between serum iron or ferritin parameters and mortality among critically ill patients.METHODS Web of Science,Embase,PubMed,and Cochrane Library databases were searched for studies on serum iron or ferritin parameters and mortality among critically ill patients.Two reviewers independently assessed,selected,and abstracted data from studies reporting on serum iron or ferritin parameters and mortality among critically ill patients.Data on serum iron or ferritin levels,mortality,and demographics were extracted.RESULTS Nineteen studies comprising 125490 patients were eligible for inclusion.We observed a slight negative effect of serum ferritin on mortality in the United States population[relative risk(RR)1.002;95%CI:1.002-1.004].In patients with sepsis,serum iron had a significant negative effect on mortality(RR=1.567;95%CI:1.208-1.925).CONCLUSION This systematic review presents evidence of a negative correlation between serum iron levels and mortality among patients with sepsis.Furthermore,it reveals a minor yet adverse impact of serum ferritin on mortality among the United States population.