期刊文献+
共找到358篇文章
< 1 2 18 >
每页显示 20 50 100
Optimal Estimation of High-Dimensional Covariance Matrices with Missing and Noisy Data
1
作者 Meiyin Wang Wanzhou Ye 《Advances in Pure Mathematics》 2024年第4期214-227,共14页
The estimation of covariance matrices is very important in many fields, such as statistics. In real applications, data are frequently influenced by high dimensions and noise. However, most relevant studies are based o... The estimation of covariance matrices is very important in many fields, such as statistics. In real applications, data are frequently influenced by high dimensions and noise. However, most relevant studies are based on complete data. This paper studies the optimal estimation of high-dimensional covariance matrices based on missing and noisy sample under the norm. First, the model with sub-Gaussian additive noise is presented. The generalized sample covariance is then modified to define a hard thresholding estimator , and the minimax upper bound is derived. After that, the minimax lower bound is derived, and it is concluded that the estimator presented in this article is rate-optimal. Finally, numerical simulation analysis is performed. The result shows that for missing samples with sub-Gaussian noise, if the true covariance matrix is sparse, the hard thresholding estimator outperforms the traditional estimate method. 展开更多
关键词 High-Dimensional covariance matrix Missing Data Sub-Gaussian Noise Optimal estimation
下载PDF
Two Stage Estimation and Its Covariance Matrix in Multivariate Seemingly Unrelated Regression System
2
作者 WANG Shi-qing YANG qiao LIU fa-gui 《Chinese Quarterly Journal of Mathematics》 CSCD 北大核心 2006年第3期397-401,共5页
Multivariate seemingly unrelated regression system is raised first and the two stage estimation and its covariance matrix are given. The results of the literatures[1-5] are extended in this paper.
关键词 multivariate seemingly unrelated regression system two stage estimation covariance matrix unrestricted estimator
下载PDF
Underdetermined DOA estimation via multiple time-delay covariance matrices and deep residual network 被引量:3
3
作者 CHEN Ying WANG Xiang HUANG Zhitao 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2021年第6期1354-1363,共10页
Higher-order statistics based approaches and signal sparseness based approaches have emerged in recent decades to resolve the underdetermined direction-of-arrival(DOA)estimation problem.These model-based methods face ... Higher-order statistics based approaches and signal sparseness based approaches have emerged in recent decades to resolve the underdetermined direction-of-arrival(DOA)estimation problem.These model-based methods face great challenges in practical applications due to high computational complexity and dependence on ideal assumptions.This paper presents an effective DOA estimation approach based on a deep residual network(DRN)for the underdetermined case.We first extract an input feature from a new matrix calculated by stacking several covariance matrices corresponding to different time delays.We then provide the input feature to the trained DRN to construct the super resolution spectrum.The DRN learns the mapping relationship between the input feature and the spatial spectrum by training.The proposed approach is superior to existing model-based estimation methods in terms of calculation efficiency,independence of source sparseness and adaptive capacity to non-ideal conditions(e.g.,low signal to noise ratio,short bit sequence).Simulations demonstrate the validity and strong performance of the proposed algorithm on both overdetermined and underdetermined cases. 展开更多
关键词 direction-of-arrival(DOA)estimation underdetermined condition deep residual network(DRN) time delay covariance matrix
下载PDF
IMPROVED ESTIMATES OF THE COVARIANCE MATRIX IN GENERAL LINEAR MIXED MODELS
4
作者 叶仁道 王松桂 《Acta Mathematica Scientia》 SCIE CSCD 2010年第4期1115-1124,共10页
In this article, the problem of estimating the covariance matrix in general linear mixed models is considered. Two new classes of estimators obtained by shrinking the eigenvalues towards the origin and the arithmetic ... In this article, the problem of estimating the covariance matrix in general linear mixed models is considered. Two new classes of estimators obtained by shrinking the eigenvalues towards the origin and the arithmetic mean, respectively, are proposed. It is shown that these new estimators dominate the unbiased estimator under the squared error loss function. Finally, some simulation results to compare the performance of the proposed estimators with that of the unbiased estimator are reported. The simulation results indicate that these new shrinkage estimators provide a substantial improvement in risk under most situations. 展开更多
关键词 covariance matrix shrinkage estimator linear mixed model EIGENVALUE
下载PDF
On convergence of covariance matrix of empirical Bayes hyper-parameter estimator
5
作者 Yue Ju Biqiang Mu Tianshi Chen 《Control Theory and Technology》 EI CSCD 2024年第2期149-162,共14页
Regularized system identification has become the research frontier of system identification in the past decade.One related core subject is to study the convergence properties of various hyper-parameter estimators as t... Regularized system identification has become the research frontier of system identification in the past decade.One related core subject is to study the convergence properties of various hyper-parameter estimators as the sample size goes to infinity.In this paper,we consider one commonly used hyper-parameter estimator,the empirical Bayes(EB).Its convergence in distribution has been studied,and the explicit expression of the covariance matrix of its limiting distribution has been given.However,what we are truly interested in are factors contained in the covariance matrix of the EB hyper-parameter estimator,and then,the convergence of its covariance matrix to that of its limiting distribution is required.In general,the convergence in distribution of a sequence of random variables does not necessarily guarantee the convergence of its covariance matrix.Thus,the derivation of such convergence is a necessary complement to our theoretical analysis about factors that influence the convergence properties of the EB hyper-parameter estimator.In this paper,we consider the regularized finite impulse response(FIR)model estimation with deterministic inputs,and show that the covariance matrix of the EB hyper-parameter estimator converges to that of its limiting distribution.Moreover,we run numerical simulations to demonstrate the efficacy of ourtheoretical results. 展开更多
关键词 Regularized system identification Hyper-parameter estimator Empirical Bayes Convergence of covariance matrix
原文传递
Direction of arrival estimation method based on quantum electromagnetic field optimization in the impulse noise 被引量:1
6
作者 DU Yanan GAO Hongyuan CHEN Menghan 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2021年第3期527-537,共11页
In order to resolve direction finding problems in the impulse noise,a direction of arrival(DOA)estimation method is proposed.The proposed DOA estimation method can restrain the impulse noise by using infinite norm exp... In order to resolve direction finding problems in the impulse noise,a direction of arrival(DOA)estimation method is proposed.The proposed DOA estimation method can restrain the impulse noise by using infinite norm exponential kernel covariance matrix and obtain excellent performance via the maximumlikelihood(ML)algorithm.In order to obtain the global optimal solutions of this method,a quantum electromagnetic field optimization(QEFO)algorithm is designed.In view of the QEFO algorithm,the proposed method can resolve the difficulties of DOA estimation in the impulse noise.Comparing with some traditional DOA estimation methods,the proposed DOA estimation method shows high superiority and robustness for determining the DOA of independent and coherent sources,which has been verified via the Monte-Carlo experiments of different schemes,especially in the case of snapshot deficiency,low generalized signal to noise ratio(GSNR)and strong impulse noise.Beyond that,the Cramer-Rao bound(CRB)of angle estimation in the impulse noise and the proof of the convergence of the QEFO algorithm are provided in this paper. 展开更多
关键词 direction of arrival(DOA)estimation impulse noise infinite norm exponential kernel covariance matrix maximum-likelihood(ML)algorithm quantum electromagnetic field optimization(QEFO)algorithm Cramer-Rao bound(CRB)
下载PDF
Texture invariant estimation of equivalent number of looks based on log-cumulants in polarimetric radar imagery
7
作者 Xianghui Yuan Tao Liu 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2017年第1期58-66,共9页
A novel estimation of the equivalent number of looks (ENL) is proposed in statistical modeling of multilook polarimetric synthetic aperture radar (PolSAR) images for the product model, which is based on the log-determ... A novel estimation of the equivalent number of looks (ENL) is proposed in statistical modeling of multilook polarimetric synthetic aperture radar (PolSAR) images for the product model, which is based on the log-determinant moments (LDM). The LDM estimators discovered by looking at certain log-cumulants of the intensities of different polarization channels and the multilook polarimetric covariance matrix, which can be used for both the Gaussian model and all product models. This estimator has analytic expressions, and uses the full covariance matrix and intensities as input, which makes more statistical information available. Experiments based on simulated data and real data are performed. The comparisons among the widely used methods of equivalent number of looks (ENL) estimation for the product model such as K and G0 distributions show that the performance of the LDM estimator is outstanding. The performance of estimators for the real data of San Francisco and Flevoland is analyzed and the results are according to those of simulated data. Finally, it can be concluded that the LDM estimator is well robust to each product model with low computational complexity and high accuracy. © 1990-2011 Beijing Institute of Aerospace Information. 展开更多
关键词 covariance matrix matrix algebra Method of moments Parameter estimation POLARIMETERS RADAR Radar imaging Tracking radar
下载PDF
Efficient Centralized Cooperative Spectrum Sensing Techniques for Cognitive Networks
8
作者 P.Gnanasivam G.T.Bharathy +1 位作者 V.Rajendran T.Tamilselvi 《Computer Systems Science & Engineering》 SCIE EI 2023年第1期55-65,共11页
Wireless Communication is a system for communicating information from one point to other,without utilizing any connections like wire,cable,or other physical medium.Cognitive Radio(CR)based systems and networks are a r... Wireless Communication is a system for communicating information from one point to other,without utilizing any connections like wire,cable,or other physical medium.Cognitive Radio(CR)based systems and networks are a revolutionary new perception in wireless communications.Spectrum sensing is a vital task of CR to avert destructive intrusion with licensed primary or main users and discover the accessible spectrum for the efficient utilization of the spectrum.Centralized Cooperative Spectrum Sensing(CSS)is a kind of spectrum sensing.Most of the test metrics designed till now for sensing the spectrum is produced by using the Sample Covariance Matrix(SCM)of the received signal.Some of the methods that use the SCM for the process of detection are Pietra-Ricci Index Detector(PRIDe),Hadamard Ratio(HR)detector,Gini Index Detector(GID),etc.This paper presents the simulation and comparative perfor-mance analysis of PRIDe with various other detectors like GID,HR,Arithmetic to Geometric Mean(AGM),Volume-based Detector number 1(VD1),Maximum-to-Minimum Eigenvalue Detection(MMED),and Generalized Likelihood Ratio Test(GLRT)using the MATLAB software.The PRIDe provides better performance in the presence of variations in the power of the signal and the noise power with less computational complexity. 展开更多
关键词 Cohnitive radio network collaborative spectrum sensing sample covariance matrix pietra-ricci index detector cooperative spectrum sensing generalized likelihood ratio test maximum-to-minimum eigenvalue detection volume-based detector number
下载PDF
分布式散射体相位估计奇异值分解法
9
作者 祝传广 张继贤 +3 位作者 龙四春 杨容华 吴文豪 张立亚 《测绘学报》 EI CSCD 北大核心 2024年第7期1308-1320,共13页
常规的分布式散射体(DS)相位估计方法需要生成全组合干涉对以构建样本协方差矩阵(SCM),然后根据SCM的统计特性估计DS相位,这一过程不但计算耗时,而且占据大量存储空间。本文提出了一种基于奇异值分解技术的DS相位快速估计方法(SVDI)。... 常规的分布式散射体(DS)相位估计方法需要生成全组合干涉对以构建样本协方差矩阵(SCM),然后根据SCM的统计特性估计DS相位,这一过程不但计算耗时,而且占据大量存储空间。本文提出了一种基于奇异值分解技术的DS相位快速估计方法(SVDI)。该方法分析的对象是单主影像干涉对组成的干涉相位矩阵而非全组合干涉对组成的SCM,因而可以有效提高计算效率、节省存储空间。并且,理论上证明了在一定条件下SVDI的结果与常规的特征值分解方法(EVD)是一致的。模拟数据和真实SAR数据的结果表明,SVDI算法有更高的计算效率,并且其相位估计精度以及形变解算精度与常规算法是一致的。 展开更多
关键词 分布式散射体 相位估计 样本协方差矩阵 特征值分解 奇异值分解
下载PDF
基于小快拍场景的联合校正稳健波束形成算法
10
作者 张秀清 伊宏波 王晓君 《无线电工程》 2024年第8期1900-1907,共8页
针对传统的自适应波束形成算法在目标导向矢量失配及接收数据的协方差矩阵存在误差时,性能急剧下降的问题,提出了一种基于小快拍场景的联合协方差矩阵重构,及导向矢量优化的稳健波束形成算法。对不确定集约束求解得到干扰导向矢量,根据... 针对传统的自适应波束形成算法在目标导向矢量失配及接收数据的协方差矩阵存在误差时,性能急剧下降的问题,提出了一种基于小快拍场景的联合协方差矩阵重构,及导向矢量优化的稳健波束形成算法。对不确定集约束求解得到干扰导向矢量,根据稀疏干扰来向的导向矢量近似正交,求出干扰导向矢量对应的干扰功率,从而完成协方差矩阵重构;对期望信号来向及其邻域进行权值求解,对加权后的数据特征分解,利用多信号分类(Multiple Signal Classification, MUSIC)谱估计算法对信号区域积分得到信号协方差矩阵,将其主特征值近似为期望信号的导向矢量完成重新估计。仿真结果表明,在无误差时,算法输出信干噪比(Signal to Interference Plus Noise Ratio, SINR)接近理论最优;在多种误差环境下输出性能随信噪比(Signal to Noise Ratio, SNR)的变化均具有较好的稳健性,并且在信号来向可精准形成波束;在小快拍时可以较快收敛至理论最优值。 展开更多
关键词 小快拍 协方差矩阵重构 稳健波束形成 导向矢量估计
下载PDF
Sparse and Low-Rank Covariance Matrix Estimation 被引量:2
11
作者 Sheng-Long Zhou Nai-Hua Xiu +1 位作者 Zi-Yan Luo Ling-Chen Kong 《Journal of the Operations Research Society of China》 EI CSCD 2015年第2期231-250,共20页
This paper aims at achieving a simultaneously sparse and low-rank estimator from the semidefinite population covariance matrices.We first benefit from a convex optimization which develops l1-norm penalty to encourage ... This paper aims at achieving a simultaneously sparse and low-rank estimator from the semidefinite population covariance matrices.We first benefit from a convex optimization which develops l1-norm penalty to encourage the sparsity and nuclear norm to favor the low-rank property.For the proposed estimator,we then prove that with high probability,the Frobenius norm of the estimation rate can be of order O(√((slgg p)/n))under a mild case,where s and p denote the number of nonzero entries and the dimension of the population covariance,respectively and n notes the sample capacity.Finally,an efficient alternating direction method of multipliers with global convergence is proposed to tackle this problem,and merits of the approach are also illustrated by practicing numerical simulations. 展开更多
关键词 covariance matrix Sparse and low-rank estimator estimation rate Alternating direction method of multipliers
原文传递
High dimensional covariance matrix estimation using multi-factor models from incomplete information 被引量:1
12
作者 XU FangFang HUANG JianChao WEN ZaiWen 《Science China Mathematics》 SCIE CSCD 2015年第4期829-844,共16页
Covariance matrix plays an important role in risk management, asset pricing, and portfolio allocation. Covariance matrix estimation becomes challenging when the dimensionality is comparable or much larger than the sam... Covariance matrix plays an important role in risk management, asset pricing, and portfolio allocation. Covariance matrix estimation becomes challenging when the dimensionality is comparable or much larger than the sample size. A widely used approach for reducing dimensionality is based on multi-factor models. Although it has been well studied and quite successful in many applications, the quality of the estimated covariance matrix is often degraded due to a nontrivial amount of missing data in the factor matrix for both technical and cost reasons. Since the factor matrix is only approximately low rank or even has full rank, existing matrix completion algorithms are not applicable. We consider a new matrix completion paradigm using the factor models directly and apply the alternating direction method of multipliers for the recovery. Numerical experiments show that the nuclear-norm matrix completion approaches are not suitable but our proposed models and algorithms are promising. 展开更多
关键词 high dimensional covariance matrix estimation multi-factor model matrix completion alternating direction method of multipliers
原文传递
无误差阵列协方差矩阵分离的阵列自校正方法
13
作者 张光普 刘恺忻 +1 位作者 付进 王晋晋 《声学学报》 EI CAS CSCD 北大核心 2024年第2期298-307,共10页
针对高分辨方位估计方法受阵列幅度相位影响导致性能退化的问题,提出一种无误差阵列协方差矩阵分离的阵列自校正方法。该方法利用协方差矩阵重构方法获取近似无误差阵列的协方差矩阵,以弱化协方差矩阵中的阵列误差,并利用特征结构配置... 针对高分辨方位估计方法受阵列幅度相位影响导致性能退化的问题,提出一种无误差阵列协方差矩阵分离的阵列自校正方法。该方法利用协方差矩阵重构方法获取近似无误差阵列的协方差矩阵,以弱化协方差矩阵中的阵列误差,并利用特征结构配置方法求解幅度和相位误差。迭代上述重构方法和特征结构配置方法,实现从未校正阵列的协方差矩阵中分离出无误差阵列的协方差矩阵和幅度相位误差矩阵。仿真结果表明,该方法准确地估计阵列误差,利用重构协方差矩阵进行方位估计能够提高方位估计精度和分辨力。湖试试验结果表明,经阵列校正后,空间中方位角度邻近的声源和干扰目标可被分辨。 展开更多
关键词 阵列自校正 波达方向估计 协方差矩阵 特征结构
下载PDF
一种非平滑相干干扰鲁棒的自适应波束形成器
14
作者 卢文龙 李旦 +1 位作者 毕权杨 张建秋 《系统工程与电子技术》 EI CSCD 北大核心 2024年第5期1467-1476,共10页
针对文献报道的鲁棒自适应波束形成(robust adaptive beamforming,RAB)算法,分析了在存在相干干扰时其性能严重下降甚至失效的原因:通过将接收信号协方差矩阵分解为阵列流形矩阵左和共轭右乘一个矩阵P的描述形式,在存在相干干扰时,P为... 针对文献报道的鲁棒自适应波束形成(robust adaptive beamforming,RAB)算法,分析了在存在相干干扰时其性能严重下降甚至失效的原因:通过将接收信号协方差矩阵分解为阵列流形矩阵左和共轭右乘一个矩阵P的描述形式,在存在相干干扰时,P为非对角阵,其非对角元素表征了信号与干扰间的互相关,该成分造成了RAB算法的失效;另表明:快拍数有限可视为特殊的相干干扰情况。为此,提出了一种构建P为对角阵的协方差矩阵拟合方法;并据拟合的协方差矩阵,给出了对非平滑相干干扰RAB方法。仿真验证了分析的有效性,所提方法在相干干扰时仍能实现非相干干扰时的性能,且收敛速度优于报道方法。 展开更多
关键词 鲁棒自适应 波束形成 Capon谱 相干干扰 协方差矩阵拟合
下载PDF
一种基于组合子阵协方差矩阵的阵列扩展方法
15
作者 梁国龙 罗钧戈 +1 位作者 郝宇 付进 《兵工学报》 EI CAS CSCD 北大核心 2024年第5期1717-1724,共8页
针对阵列在低信噪比条件下信号检测概率低且方位估计性能下降的问题,提出一种基于组合子阵协方差矩阵的线列阵扩展方法。该方法将阵列划分为奇偶子阵,根据子阵的互协方差与自协方差矩阵构建扩展接收数据,对扩展接收数据进行组合作为最... 针对阵列在低信噪比条件下信号检测概率低且方位估计性能下降的问题,提出一种基于组合子阵协方差矩阵的线列阵扩展方法。该方法将阵列划分为奇偶子阵,根据子阵的互协方差与自协方差矩阵构建扩展接收数据,对扩展接收数据进行组合作为最终的阵列接收数据进行处理,由此在突破阵列物理孔径的基础上避免仅使用奇偶阵元互协方差重构接收数据时产生的栅瓣问题。仿真结果表明:新方法可以降低波束输出的旁瓣,具有较好的弱目标检测能力和方位分辨力;相比于基于奇偶阵元互协方差的阵列扩展方法,新方法可有效提升方位估计精度,且不存在栅瓣问题。 展开更多
关键词 阵列扩展 弱目标检测 波达方向估计 栅瓣 协方差矩阵
下载PDF
基于稀疏线阵协方差矩阵重构的DOA估计方法研究
16
作者 徐文成 李秀坤 于歌 《信号处理》 CSCD 北大核心 2024年第7期1266-1273,共8页
相比均匀线阵(Uniform Linear Array,ULA),相同阵元数目下稀疏线阵(Sparse Linear Array,SLA)的抗耦合效应更好,阵列孔径更大,到达方向(Direction of Arrival,DOA)估计的自由度(Degrees Of Freedom,DOF)更高,因而近年来得到了广泛的研... 相比均匀线阵(Uniform Linear Array,ULA),相同阵元数目下稀疏线阵(Sparse Linear Array,SLA)的抗耦合效应更好,阵列孔径更大,到达方向(Direction of Arrival,DOA)估计的自由度(Degrees Of Freedom,DOF)更高,因而近年来得到了广泛的研究。为了可以进行高DOF的DOA估计,学者们开始研究SLA的差分虚拟阵元,差分虚拟阵元对应的协方差矩阵相比原阵元对应的协方差矩阵维度更大,因而估计的DOF更高。当SLA的差分虚拟阵元连续取值时,可以利用已有阵元的接收信息,得到SLA的协方差矩阵,在该矩阵的基础之上构建差分虚拟阵元的协方差矩阵进而进行DOA估计。然而,当SLA的差分虚拟阵元存在孔洞时,即差分虚拟阵元不能连续取值时,不能直接利用重构的协方差矩阵进行DOA估计,需要恢复完全增广协方差矩阵的信息再进行DOA估计。对于该问题,本文基于矢量化后原协方差矩阵和虚拟差分阵协方差矩阵的误差分布情况,并结合完全增广协方差矩阵的低秩特性和半正定特性来构建优化问题。通过求解该问题来恢复维度更高的完全增广协方差矩阵。最后对该矩阵进行奇异值分解,利用多重信号分类(Multiple Signal Classification,MUSIC)算法就可以获得多源的空间谱。本文最后通过数值仿真试验验证了所提算法可以实现高DOF的DOA估计,并且相比于现有算法,本文所提算法对欠定DOA估计的效果更好,多源DOA估计的精度更高,产生的误差更小。 展开更多
关键词 DOA估计 稀疏线阵 协方差矩阵 低秩矩阵重构
下载PDF
基于声压振速联合处理的稀疏协方差DOA估计
17
作者 禹秀梅 郑文康 +1 位作者 王立府 王鹏 《中北大学学报(自然科学版)》 CAS 2024年第3期301-308,共8页
为充分利用矢量水听器中声压振速信息之间的关系来提高DOA估计精度,本文提出了基于声压振速联合处理的稀疏协方差DOA(Direction ofArrival)估计方法。该方法首先利用声压振速之间的相关性,构造阵列协方差矩阵;其次,将空间入射角度集合... 为充分利用矢量水听器中声压振速信息之间的关系来提高DOA估计精度,本文提出了基于声压振速联合处理的稀疏协方差DOA(Direction ofArrival)估计方法。该方法首先利用声压振速之间的相关性,构造阵列协方差矩阵;其次,将空间入射角度集合进行等角度划分,构造超完备冗余字典;然后,在过完备基上寻找阵列协方差矩阵的最稀疏系数,利用系数向量中的非零行所对应的行号得到DOA估计值。将该算法与CBF算法及L1-SVD算法进行对比仿真实验,结果表明,在信号源数分别为3,4,5的情形下,本文所提算法在低信噪比和小快拍数情形时,具有更低的均方根误差,DOA估计性能优势明显。 展开更多
关键词 DOA估计 稀疏表示 阵列协方差矩阵 矢量线性阵
下载PDF
基于互质阵列的协方差矩阵重构算法
18
作者 屠亚杰 方遒 李艳玲 《厦门理工学院学报》 2024年第3期22-30,共9页
针对基于互质阵列波达方向(direction of arrival, DOA)估计方法对连续虚拟阵元得到的样本协方差矩阵信息利用率不高的问题,提出一种基于互质阵列的协方差矩阵重构算法。该算法利用最大连续虚拟均匀线阵协方差矩阵的每一行元素进行Toepl... 针对基于互质阵列波达方向(direction of arrival, DOA)估计方法对连续虚拟阵元得到的样本协方差矩阵信息利用率不高的问题,提出一种基于互质阵列的协方差矩阵重构算法。该算法利用最大连续虚拟均匀线阵协方差矩阵的每一行元素进行Toeplitz矩阵重构,再对这些矩阵加权求和获得新的满秩协方差矩阵,提高对接收数据的利用率并消除噪声贡献对DOA估计结果的影响。理论分析和仿真结果表明,该算法能实现欠定DOA估计,在低信噪比、小快拍数、入射角度间隔小条件下有良好的角度估计精度。 展开更多
关键词 波达方向估计 互质阵列 矩阵重构 协方差矩阵 均匀线阵 TOEPLITZ矩阵
下载PDF
A New Estimator of Covariance Matrix via Partial Iwasawa Coordinates 被引量:1
19
作者 XU Kai 《Journal of Systems Science & Complexity》 SCIE EI CSCD 2017年第5期1173-1188,共16页
This paper is concerned with tile proOlenl or improving hue ~lma^u~ u~ under Stein's loss. By the partial Iwasawa coordinates of covariance matrix, the corresponding risk can be split into three parts. One can use th... This paper is concerned with tile proOlenl or improving hue ~lma^u~ u~ under Stein's loss. By the partial Iwasawa coordinates of covariance matrix, the corresponding risk can be split into three parts. One can use the information in the weighted matrix of weighted quadratic loss to improve one part of risk. However, this paper indirectly takes advantage of the information in the sample mean and reuses Iwasawa coordinates to improve the rest of risk. It is worth mentioning that the process above can be repeated. Finally, a Monte Carlo simulation study is carried out to verify the theoretical results. 展开更多
关键词 covariance matrix James-Stein estimator partial Iwasawa coordinates Stein's loss weighted quadratic loss
原文传递
Truncated Estimator of Asymptotic Covariance Matrix in Partially Linear Models with Heteroscedastic Errors
20
作者 Yan-meng Zhao Jin-hong You Yong Zhou 《Acta Mathematicae Applicatae Sinica》 SCIE CSCD 2006年第4期565-574,共10页
A partially linear regression model with heteroscedastic and/or serially correlated errors is studied here. It is well known that in order to apply the semiparametric least squares estimation (SLSE) to make statisti... A partially linear regression model with heteroscedastic and/or serially correlated errors is studied here. It is well known that in order to apply the semiparametric least squares estimation (SLSE) to make statistical inference a consistent estimator of the asymptotic covariance matrix is needed. The traditional residual-based estimator of the asymptotic covariance matrix is not consistent when the errors are heteroscedastic and/or serially correlated. In this paper we propose a new estimator by truncating, which is an extension of the procedure in White. This estimator is shown to be consistent when the truncating parameter converges to infinity with some rate. 展开更多
关键词 Partially linear regression model heteroscedastic serially correlation semiparametric least squares estimation asymptotic covariance matrix
原文传递
上一页 1 2 18 下一页 到第
使用帮助 返回顶部