In this paper, the problem of abnormal spectrum usage between satellite spectrum sharing systems is investigated to support multi-satellite spectrum coexistence. Given the cost of monitoring, the mobility of low-orbit...In this paper, the problem of abnormal spectrum usage between satellite spectrum sharing systems is investigated to support multi-satellite spectrum coexistence. Given the cost of monitoring, the mobility of low-orbit satellites, and the directional nature of their signals, traditional monitoring methods are no longer suitable, especially in the case of multiple power level. Mobile crowdsensing(MCS), as a new technology, can make full use of idle resources to complete a variety of perceptual tasks. However, traditional MCS heavily relies on a centralized server and is vulnerable to single point of failure attacks. Therefore, we replace the original centralized server with a blockchain-based distributed service provider to enable its security. Therefore, in this work, we propose a blockchain-based MCS framework, in which we explain in detail how this framework can achieve abnormal frequency behavior monitoring in an inter-satellite spectrum sharing system. Then, under certain false alarm probability, we propose an abnormal spectrum detection algorithm based on mixed hypothesis test to maximize detection probability in single power level and multiple power level scenarios, respectively. Finally, a Bad out of Good(BooG) detector is proposed to ease the computational pressure on the blockchain nodes. Simulation results show the effectiveness of the proposed framework.展开更多
In this paper,we investigate the feasibility and performance of the covert communication with a spectrum sharing relay in the finite blocklength regime.Specifically,the relay opportunistically forwards the source'...In this paper,we investigate the feasibility and performance of the covert communication with a spectrum sharing relay in the finite blocklength regime.Specifically,the relay opportunistically forwards the source's messages to the primary receiver or conveys the covert messages to its own receiver via the sharing spectrum,while the warden attempts to detect the transmission.First,we derive a lower bound on the covertness constraint,and the analytical expressions of both the primary average effective covert throughput(AECT)and sum AECT are presented by considering the overall decoding error performance.Then,we formulate two optimization problems to maximize the primary and sum AECT respectively by optimizing the blocklength and the transmit power at the source and the relay.Our examinations show that there exists an optimal blocklength to maximize the primary and sum AECT.Besides,it is revealed that,to maximize the primary AECT,the optimal transmit power of each hop increases as its channel quality deteriorates.Furthermore,in the optimization for maximizing the sum AECT,the optimal transmit power at the source equals to zero when the channel quality from relay to the secondary receiver is not weaker than that from relay to the primary receiver.展开更多
Peer-to-peer(P2P)spectrum sharing and energy trading are promising solutions to locally satisfy spectrum and energy demands in power Internet of Things(IoT).However,implementation of largescale P2P spectrum sharing an...Peer-to-peer(P2P)spectrum sharing and energy trading are promising solutions to locally satisfy spectrum and energy demands in power Internet of Things(IoT).However,implementation of largescale P2P spectrum sharing and energy trading confronts security and privacy challenges.In this paper,we exploit consortium blockchain and Directed Acyclic Graph(DAG)to propose a new secure and distributed spectrum sharing and energy trading framework in power IoT,named spectrum-energy chain,where a set of local aggregators(LAGs)cooperatively confirm the identity of the power devices by utilizing consortium blockchain,so as to form a main chain.Then,the local power devices verify spectrum and energy micro-transactions simultaneously but asynchronously to form local spectrum tangle and local energy tangle,respectively.Moreover,an iterative double auction based micro transactions scheme is designed to solve the spectrum and energy pricing and the amount of shared spectrum and energy among power devices.Security analysis and numerical results illustrate that the developed spectrum-energy chain and the designed iterative double auction based microtransactions scheme are secure and efficient for spectrum sharing and energy trading in power IoT.展开更多
The exponential growth of Internet of Things(IoT)and 5G networks has resulted in maximum users,and the role of cognitive radio has become pivotal in handling the crowded users.In this scenario,cognitive radio techniqu...The exponential growth of Internet of Things(IoT)and 5G networks has resulted in maximum users,and the role of cognitive radio has become pivotal in handling the crowded users.In this scenario,cognitive radio techniques such as spectrum sensing,spectrum sharing and dynamic spectrum access will become essential components in Wireless IoT communication.IoT devices must learn adaptively to the environment and extract the spectrum knowledge and inferred spectrum knowledge by appropriately changing communication parameters such as modulation index,frequency bands,coding rate etc.,to accommodate the above characteristics.Implementing the above learning methods on the embedded chip leads to high latency,high power consumption and more chip area utilisation.To overcome the problems mentioned above,we present DEEP HOLE Radio sys-tems,the intelligent system enabling the spectrum knowledge extraction from the unprocessed samples by the optimized deep learning models directly from the Radio Frequency(RF)environment.DEEP HOLE Radio provides(i)an opti-mized deep learning framework with a good trade-off between latency,power and utilization.(ii)Complete Hardware-Software architecture where the SoC’s coupled with radio transceivers for maximum performance.The experimentation has been carried out using GNURADIO software interfaced with Zynq-7000 devices mounting on ESP8266 radio transceivers with inbuilt Omni direc-tional antennas.The whole spectrum of knowledge has been extracted using GNU radio.These extracted features are used to train the proposed optimized deep learning models,which run parallel on Zynq-SoC 7000,consuming less area,power,latency and less utilization area.The proposed framework has been evaluated and compared with the existing frameworks such as RFLearn,Long Term Short Memory(LSTM),Convolutional Neural Networks(CNN)and Deep Neural Networks(DNN).The outcome shows that the proposed framework has outperformed the existing framework regarding the area,power and time.More-over,the experimental results show that the proposed framework decreases the delay,power and area by 15%,20%25%concerning the existing RFlearn and other hardware constraint frameworks.展开更多
由于免许可证频段电磁环境复杂,因此LTE(Long Term Evolution)业务在该频段部署实现多业务共存的关键是对其进行监测和分类。为此,采用NS-3网络仿真模拟器建立了LTE和Wi-Fi室内业务共存模型,通过改变网络和场景的各类参数构建了监测模型...由于免许可证频段电磁环境复杂,因此LTE(Long Term Evolution)业务在该频段部署实现多业务共存的关键是对其进行监测和分类。为此,采用NS-3网络仿真模拟器建立了LTE和Wi-Fi室内业务共存模型,通过改变网络和场景的各类参数构建了监测模型,获得了文件传输FT(file transfers)、音频流VF(voice flows)和恒定比特流CBRS(constant bit rate streams)三种模式下的数据集。结果表明,采用FT数据集,在K最近邻、支持向量机、决策树和随机森林算法的分类准确率有明显提高;同时,VF与CBRS两种数据集在上述算法上准确率达到了80%左右。展开更多
In this paper, we focus on the power allocation of Integrated Sensing and Communication(ISAC) with orthogonal frequency division multiplexing(OFDM) waveform. In order to improve the spectrum utilization efficiency in ...In this paper, we focus on the power allocation of Integrated Sensing and Communication(ISAC) with orthogonal frequency division multiplexing(OFDM) waveform. In order to improve the spectrum utilization efficiency in ISAC, we propose a design scheme based on spectrum sharing, that is,to maximize the mutual information(MI) of radar sensing while ensuring certain communication rate and transmission power constraints. In the proposed scheme, three cases are considered for the scattering off the target due to the communication signals,as negligible signal, beneficial signal, and interference signal to radar sensing, respectively, thus requiring three power allocation schemes. However,the corresponding power allocation schemes are nonconvex and their closed-form solutions are unavailable as a consequence. Motivated by this, alternating optimization(AO), sequence convex programming(SCP) and Lagrange multiplier are individually combined for three suboptimal solutions corresponding with three power allocation schemes. By combining the three algorithms, we transform the non-convex problem which is difficult to deal with into a convex problem which is easy to solve and obtain the suboptimal solution of the corresponding optimization problem. Numerical results show that, compared with the allocation results of the existing algorithms, the proposed joint design algorithm significantly improves the radar performance.展开更多
In order to avoid the system performance deterioration caused by the wireless fading channel and imperfect channel estimation in cognitive radio networks, the spectrum sharing problem with the consideration of feedbac...In order to avoid the system performance deterioration caused by the wireless fading channel and imperfect channel estimation in cognitive radio networks, the spectrum sharing problem with the consideration of feedback control information from the primary user is analyzed. An improved spectrum sharing algorithm based on the combination of the feedback control information and the optimization algorithm is proposed. The relaxation method is used to achieve the approximate spectrum sharing model, and the spectrum sharing strategy that satisfies the individual outage probability constraints can be obtained iteratively with the observed outage probability. Simulation results show that the proposed spectrum sharing algorithm can achieve the spectrum sharing strategy that satisfies the outage probability constraints and reduce the average outage probability without causing maximum transmission rate reduction of the secondary user.展开更多
文摘In this paper, the problem of abnormal spectrum usage between satellite spectrum sharing systems is investigated to support multi-satellite spectrum coexistence. Given the cost of monitoring, the mobility of low-orbit satellites, and the directional nature of their signals, traditional monitoring methods are no longer suitable, especially in the case of multiple power level. Mobile crowdsensing(MCS), as a new technology, can make full use of idle resources to complete a variety of perceptual tasks. However, traditional MCS heavily relies on a centralized server and is vulnerable to single point of failure attacks. Therefore, we replace the original centralized server with a blockchain-based distributed service provider to enable its security. Therefore, in this work, we propose a blockchain-based MCS framework, in which we explain in detail how this framework can achieve abnormal frequency behavior monitoring in an inter-satellite spectrum sharing system. Then, under certain false alarm probability, we propose an abnormal spectrum detection algorithm based on mixed hypothesis test to maximize detection probability in single power level and multiple power level scenarios, respectively. Finally, a Bad out of Good(BooG) detector is proposed to ease the computational pressure on the blockchain nodes. Simulation results show the effectiveness of the proposed framework.
基金supported by National Natural Science Foundation of China(No.62071486)Natural Science Foundation on Frontier Leading Technology Basic Research Project of Jiangsu Province,China(BK20212001)Key Research and Development Program of Jiangsu Province Key Project and Topics,China(2019B010157001)。
文摘In this paper,we investigate the feasibility and performance of the covert communication with a spectrum sharing relay in the finite blocklength regime.Specifically,the relay opportunistically forwards the source's messages to the primary receiver or conveys the covert messages to its own receiver via the sharing spectrum,while the warden attempts to detect the transmission.First,we derive a lower bound on the covertness constraint,and the analytical expressions of both the primary average effective covert throughput(AECT)and sum AECT are presented by considering the overall decoding error performance.Then,we formulate two optimization problems to maximize the primary and sum AECT respectively by optimizing the blocklength and the transmit power at the source and the relay.Our examinations show that there exists an optimal blocklength to maximize the primary and sum AECT.Besides,it is revealed that,to maximize the primary AECT,the optimal transmit power of each hop increases as its channel quality deteriorates.Furthermore,in the optimization for maximizing the sum AECT,the optimal transmit power at the source equals to zero when the channel quality from relay to the secondary receiver is not weaker than that from relay to the primary receiver.
基金supported by the National Key R&D Program of China(2020YFB1807801,2020YFB1807800)in part by Project Supported by Engineering Research Center of Mobile Communications,Ministry of Education(cqupt-mct-202003)+2 种基金in part by Key Lab of Information Network Security,Ministry of Public Security under Grant C19603in part by National Natural Science Foundation of China(Grant No.61901067 and 61901013)in part by Chongqing Municipal Natural Science Foundation(Grant No.cstc2020jcyj-msxmX0339).
文摘Peer-to-peer(P2P)spectrum sharing and energy trading are promising solutions to locally satisfy spectrum and energy demands in power Internet of Things(IoT).However,implementation of largescale P2P spectrum sharing and energy trading confronts security and privacy challenges.In this paper,we exploit consortium blockchain and Directed Acyclic Graph(DAG)to propose a new secure and distributed spectrum sharing and energy trading framework in power IoT,named spectrum-energy chain,where a set of local aggregators(LAGs)cooperatively confirm the identity of the power devices by utilizing consortium blockchain,so as to form a main chain.Then,the local power devices verify spectrum and energy micro-transactions simultaneously but asynchronously to form local spectrum tangle and local energy tangle,respectively.Moreover,an iterative double auction based micro transactions scheme is designed to solve the spectrum and energy pricing and the amount of shared spectrum and energy among power devices.Security analysis and numerical results illustrate that the developed spectrum-energy chain and the designed iterative double auction based microtransactions scheme are secure and efficient for spectrum sharing and energy trading in power IoT.
文摘The exponential growth of Internet of Things(IoT)and 5G networks has resulted in maximum users,and the role of cognitive radio has become pivotal in handling the crowded users.In this scenario,cognitive radio techniques such as spectrum sensing,spectrum sharing and dynamic spectrum access will become essential components in Wireless IoT communication.IoT devices must learn adaptively to the environment and extract the spectrum knowledge and inferred spectrum knowledge by appropriately changing communication parameters such as modulation index,frequency bands,coding rate etc.,to accommodate the above characteristics.Implementing the above learning methods on the embedded chip leads to high latency,high power consumption and more chip area utilisation.To overcome the problems mentioned above,we present DEEP HOLE Radio sys-tems,the intelligent system enabling the spectrum knowledge extraction from the unprocessed samples by the optimized deep learning models directly from the Radio Frequency(RF)environment.DEEP HOLE Radio provides(i)an opti-mized deep learning framework with a good trade-off between latency,power and utilization.(ii)Complete Hardware-Software architecture where the SoC’s coupled with radio transceivers for maximum performance.The experimentation has been carried out using GNURADIO software interfaced with Zynq-7000 devices mounting on ESP8266 radio transceivers with inbuilt Omni direc-tional antennas.The whole spectrum of knowledge has been extracted using GNU radio.These extracted features are used to train the proposed optimized deep learning models,which run parallel on Zynq-SoC 7000,consuming less area,power,latency and less utilization area.The proposed framework has been evaluated and compared with the existing frameworks such as RFLearn,Long Term Short Memory(LSTM),Convolutional Neural Networks(CNN)and Deep Neural Networks(DNN).The outcome shows that the proposed framework has outperformed the existing framework regarding the area,power and time.More-over,the experimental results show that the proposed framework decreases the delay,power and area by 15%,20%25%concerning the existing RFlearn and other hardware constraint frameworks.
文摘由于免许可证频段电磁环境复杂,因此LTE(Long Term Evolution)业务在该频段部署实现多业务共存的关键是对其进行监测和分类。为此,采用NS-3网络仿真模拟器建立了LTE和Wi-Fi室内业务共存模型,通过改变网络和场景的各类参数构建了监测模型,获得了文件传输FT(file transfers)、音频流VF(voice flows)和恒定比特流CBRS(constant bit rate streams)三种模式下的数据集。结果表明,采用FT数据集,在K最近邻、支持向量机、决策树和随机森林算法的分类准确率有明显提高;同时,VF与CBRS两种数据集在上述算法上准确率达到了80%左右。
文摘In this paper, we focus on the power allocation of Integrated Sensing and Communication(ISAC) with orthogonal frequency division multiplexing(OFDM) waveform. In order to improve the spectrum utilization efficiency in ISAC, we propose a design scheme based on spectrum sharing, that is,to maximize the mutual information(MI) of radar sensing while ensuring certain communication rate and transmission power constraints. In the proposed scheme, three cases are considered for the scattering off the target due to the communication signals,as negligible signal, beneficial signal, and interference signal to radar sensing, respectively, thus requiring three power allocation schemes. However,the corresponding power allocation schemes are nonconvex and their closed-form solutions are unavailable as a consequence. Motivated by this, alternating optimization(AO), sequence convex programming(SCP) and Lagrange multiplier are individually combined for three suboptimal solutions corresponding with three power allocation schemes. By combining the three algorithms, we transform the non-convex problem which is difficult to deal with into a convex problem which is easy to solve and obtain the suboptimal solution of the corresponding optimization problem. Numerical results show that, compared with the allocation results of the existing algorithms, the proposed joint design algorithm significantly improves the radar performance.
基金supported by the National Natural Science Foundation of China (61073183)the Natural Science Foundation for the Youth of Heilongjiang Province (QC2012C070)
文摘In order to avoid the system performance deterioration caused by the wireless fading channel and imperfect channel estimation in cognitive radio networks, the spectrum sharing problem with the consideration of feedback control information from the primary user is analyzed. An improved spectrum sharing algorithm based on the combination of the feedback control information and the optimization algorithm is proposed. The relaxation method is used to achieve the approximate spectrum sharing model, and the spectrum sharing strategy that satisfies the individual outage probability constraints can be obtained iteratively with the observed outage probability. Simulation results show that the proposed spectrum sharing algorithm can achieve the spectrum sharing strategy that satisfies the outage probability constraints and reduce the average outage probability without causing maximum transmission rate reduction of the secondary user.