The SHRP2 Naturalistic Driving Study was used to evaluate the impact of various work zone and driver characteristics on back of queue safety critical events (crash, near-crash, or conflicts) The model included 43 SCE ...The SHRP2 Naturalistic Driving Study was used to evaluate the impact of various work zone and driver characteristics on back of queue safety critical events (crash, near-crash, or conflicts) The model included 43 SCE and 209 “normal” events which were used as controls. The traces included representing 209 unique drivers. A Mixed-Effects Logistic Regression model was developed with probability of a SCE as the response variable and driver and work zone characteristics as predictor variables. The final model indicated glances over 1 second away from the driving task and following closely increased risk of an SCE by 3.8 times and 2.9 times, respectively. Average speed was negatively correlated to crash risk. This is counterintuitive since in most cases, it is expected that higher speeds are related to back of queue crashes. However, most queues form under congested conditions. As a result, vehicles encountering a back of queue would be more likely to be traveling at lower speeds.展开更多
文摘The SHRP2 Naturalistic Driving Study was used to evaluate the impact of various work zone and driver characteristics on back of queue safety critical events (crash, near-crash, or conflicts) The model included 43 SCE and 209 “normal” events which were used as controls. The traces included representing 209 unique drivers. A Mixed-Effects Logistic Regression model was developed with probability of a SCE as the response variable and driver and work zone characteristics as predictor variables. The final model indicated glances over 1 second away from the driving task and following closely increased risk of an SCE by 3.8 times and 2.9 times, respectively. Average speed was negatively correlated to crash risk. This is counterintuitive since in most cases, it is expected that higher speeds are related to back of queue crashes. However, most queues form under congested conditions. As a result, vehicles encountering a back of queue would be more likely to be traveling at lower speeds.