This paper deals with both the leading train and the following train in a train tracking under a four-aspect fixed autoblock system in order to study the optimum operating strategy for energy saving. After analyzing t...This paper deals with both the leading train and the following train in a train tracking under a four-aspect fixed autoblock system in order to study the optimum operating strategy for energy saving. After analyzing the working principle of the four-aspect fixed autoblock system, an energy-saving control model is created based on the dynamics equation of the Wains. In addition to safety, energy consumption and time error are the main concerns of the model. Based on this model, dynamic speed constraints of the following train are proposed, defined by the leading gain dynamically. At the same time, the static speed constraints defined by the line conditions are also taken into account. The parallel genetic algorithm is used to search the optimum operating strategy. In order to simplify the solving process, the external punishment function is adopted to transform this problem with constraints to the one without constraints. By using the real number coding and the strategy of dividing ramps into three parts, the convergence of GA is accelerated and the length of chromosomes is shortened. The simulation result from a four-aspect fixed autoblock system simulation platform shows that the method can reduce the energy consumption effectively in the premise of ensuring safety and punctuality.展开更多
As the existing coordinated control strategies between grid and unit have limitations in isolated power system, this paper introduces new coordinated control strategies which can improve the stability of isolated syst...As the existing coordinated control strategies between grid and unit have limitations in isolated power system, this paper introduces new coordinated control strategies which can improve the stability of isolated system operation. This paper analyzes the power grid side and unit side influence factors on the isolated power system. The dynamic models which are suitable for islanding operation are applied to simulate and analyze the stability and dynamic characteristics of the isolated power system under the conditions of different load disturbances and governor parameters. With considering the differences of frequency characteristics between the interconnected and isolated power system, the adjusting and optimization methods of under frequency load shedding are proposed to meet the frequency stability requirements simultaneously in the two cases. Not only proper control strategies of the power plant but the settings of their parameters are suggested to improve the operation stability of the isolated power system. To confirm the correctness and effectiveness of the method mentioned above, the isolated system operation test was conducted under the real power system condition, and the results show that the proposed coordinated control strategies can greatly improve stability of the isolated power system.展开更多
In this paper, we propose a new formula of the real-time minimum safety headway based on the relative velocity of consecutive trains and present a dynamic model of high-speed passenger train movements in the rail line...In this paper, we propose a new formula of the real-time minimum safety headway based on the relative velocity of consecutive trains and present a dynamic model of high-speed passenger train movements in the rail line based on the proposed formula of the minimum safety headway. Moreover, we provide the control strategies of the high-speed passenger train operations based on the proposed formula of the real-time minimum safety headway and the dynamic model of highspeed passenger train movements. The simulation results demonstrate that the proposed control strategies of the passenger train operations can greatly reduce the delay propagation in the high-speed rail line when a random delay occurs.展开更多
基金supported by the National Science & Technology Pillar Program during the Eleventh Five-Year Plan Period of China (No.2009BAG12A05)
文摘This paper deals with both the leading train and the following train in a train tracking under a four-aspect fixed autoblock system in order to study the optimum operating strategy for energy saving. After analyzing the working principle of the four-aspect fixed autoblock system, an energy-saving control model is created based on the dynamics equation of the Wains. In addition to safety, energy consumption and time error are the main concerns of the model. Based on this model, dynamic speed constraints of the following train are proposed, defined by the leading gain dynamically. At the same time, the static speed constraints defined by the line conditions are also taken into account. The parallel genetic algorithm is used to search the optimum operating strategy. In order to simplify the solving process, the external punishment function is adopted to transform this problem with constraints to the one without constraints. By using the real number coding and the strategy of dividing ramps into three parts, the convergence of GA is accelerated and the length of chromosomes is shortened. The simulation result from a four-aspect fixed autoblock system simulation platform shows that the method can reduce the energy consumption effectively in the premise of ensuring safety and punctuality.
文摘As the existing coordinated control strategies between grid and unit have limitations in isolated power system, this paper introduces new coordinated control strategies which can improve the stability of isolated system operation. This paper analyzes the power grid side and unit side influence factors on the isolated power system. The dynamic models which are suitable for islanding operation are applied to simulate and analyze the stability and dynamic characteristics of the isolated power system under the conditions of different load disturbances and governor parameters. With considering the differences of frequency characteristics between the interconnected and isolated power system, the adjusting and optimization methods of under frequency load shedding are proposed to meet the frequency stability requirements simultaneously in the two cases. Not only proper control strategies of the power plant but the settings of their parameters are suggested to improve the operation stability of the isolated power system. To confirm the correctness and effectiveness of the method mentioned above, the isolated system operation test was conducted under the real power system condition, and the results show that the proposed coordinated control strategies can greatly improve stability of the isolated power system.
基金supported by the National Basic Research Program of China (Grant No. 2012CB725400)the National Natural Science Foundation of China (Grant No. 71131001-1)the Research Foundation of State Key Laboratory of Rail Traffic Control and Safety,Beijing Jiaotong University,China (Grant Nos. RCS2012ZZ001 and RCS2012ZT001)
文摘In this paper, we propose a new formula of the real-time minimum safety headway based on the relative velocity of consecutive trains and present a dynamic model of high-speed passenger train movements in the rail line based on the proposed formula of the minimum safety headway. Moreover, we provide the control strategies of the high-speed passenger train operations based on the proposed formula of the real-time minimum safety headway and the dynamic model of highspeed passenger train movements. The simulation results demonstrate that the proposed control strategies of the passenger train operations can greatly reduce the delay propagation in the high-speed rail line when a random delay occurs.
基金Supported by the National Natural Science Foundation of China(51177150)the National Basic Research Program(973 Program)(2013CB035604)+1 种基金the Aeronautical Science Foundation of China(Project 2013ZB76004)the Natural Science Foundation of Zhejiang Province(LY14E070004)