The effects of high drawing speeds on parameters of holey fibers are presented. A holey fiber preform structure was made by using tube-in-tube method and was drawn at high speeds with an aim of mass production to meet...The effects of high drawing speeds on parameters of holey fibers are presented. A holey fiber preform structure was made by using tube-in-tube method and was drawn at high speeds with an aim of mass production to meet the demand of next generation communication systems. Transmission parameters such as numerical aperture and normalized frequency of the fabricated holey fibers have been measured and compared with theoretical values based on effective index method. Although the fabricated holey fibers were not of high quality, the analyses of the parameters have shown promising outlook for fabrication of such fibers.展开更多
The effect of drawing speed on temperature rise and microstructure distribution in twinning-induced plasticity(TWIP)steel during wire drawing has been investigated to improve drawability for wire rod applications.Alth...The effect of drawing speed on temperature rise and microstructure distribution in twinning-induced plasticity(TWIP)steel during wire drawing has been investigated to improve drawability for wire rod applications.Although wire drawing process is performed at room temperature,heat is generated due to the plastic deformation and friction at the wire-die interface.The steel wires subjected to the low drawing speed(LD)of 0.5 m/min and the high drawing speed(HD)of 5.0 m/min were analyzed using the numerical simulation and electron backscatter diffraction techniques.Interestingly,the specimens subjected to the HD had a higher drawability by about 18%compared to the LD,which is totally different from the general behavior of plain carbon pearlitic steels.The LD wire had uniform temperature distribution along the radial direction during wire drawing.In contrast,the HD wire had a temperature gradient along the radial direction due to the higher frictional effect at surface:the minimum temperature of 58℃ at center area and the maximum temperature of 143 C at surface area.The higher stacking fault energy of HD wire at the surface area due to the high temperature rise retarded twinning rate,resulting in the prevention of fast exhaustion in ductility in comparison with the LD wires since the earlier depletion of twins at surface area is known as the main reason for the fracture of TWIP steel during wire drawing.Consequently,HD process delayed the fracture strain of wire and increased the uniformity of microstructure and mechanical properties along the radial direction.展开更多
文摘The effects of high drawing speeds on parameters of holey fibers are presented. A holey fiber preform structure was made by using tube-in-tube method and was drawn at high speeds with an aim of mass production to meet the demand of next generation communication systems. Transmission parameters such as numerical aperture and normalized frequency of the fabricated holey fibers have been measured and compared with theoretical values based on effective index method. Although the fabricated holey fibers were not of high quality, the analyses of the parameters have shown promising outlook for fabrication of such fibers.
基金This research was supported by National Research Foundation of Korea(NRF-2018R1D1A1B07050103).
文摘The effect of drawing speed on temperature rise and microstructure distribution in twinning-induced plasticity(TWIP)steel during wire drawing has been investigated to improve drawability for wire rod applications.Although wire drawing process is performed at room temperature,heat is generated due to the plastic deformation and friction at the wire-die interface.The steel wires subjected to the low drawing speed(LD)of 0.5 m/min and the high drawing speed(HD)of 5.0 m/min were analyzed using the numerical simulation and electron backscatter diffraction techniques.Interestingly,the specimens subjected to the HD had a higher drawability by about 18%compared to the LD,which is totally different from the general behavior of plain carbon pearlitic steels.The LD wire had uniform temperature distribution along the radial direction during wire drawing.In contrast,the HD wire had a temperature gradient along the radial direction due to the higher frictional effect at surface:the minimum temperature of 58℃ at center area and the maximum temperature of 143 C at surface area.The higher stacking fault energy of HD wire at the surface area due to the high temperature rise retarded twinning rate,resulting in the prevention of fast exhaustion in ductility in comparison with the LD wires since the earlier depletion of twins at surface area is known as the main reason for the fracture of TWIP steel during wire drawing.Consequently,HD process delayed the fracture strain of wire and increased the uniformity of microstructure and mechanical properties along the radial direction.