期刊文献+
共找到816篇文章
< 1 2 41 >
每页显示 20 50 100
Precise Positioning Method for Seafloor Geodetic Stations Based on the Temporal Variation of Sound Speed Structure 被引量:1
1
作者 Shuang ZHAO Zhenjie WANG +3 位作者 Zhixi NIE Kaifei HE Huimin LIU Zhen SUN 《Journal of Geodesy and Geoinformation Science》 CSCD 2023年第2期81-92,共12页
At present,GNSS-Acoustic(GNSS-A)combined technology is widely used in positioning for seafloor geodetic stations.Based on Sound Velocity Profiles(SVPs)data,the equal gradient acoustic ray-tracing method is applied in ... At present,GNSS-Acoustic(GNSS-A)combined technology is widely used in positioning for seafloor geodetic stations.Based on Sound Velocity Profiles(SVPs)data,the equal gradient acoustic ray-tracing method is applied in high-precision position inversion.However,because of the discreteness of the SVPs used in the forementioned method,it ignores the continuous variation of sound velocity structure in time domain,which worsens the positioning accuracy.In this study,the time-domain variation of Sound Speed Structure(SSS)has been considered,and the cubic B-spline function is applied to characterize the perturbed sound velocity.Based on the ray-tracing theory,an inversion model of“stepwise iteration&progressive corrections”for both positioning and sound speed information is proposed,which conducts the gradual correction of seafloor geodetic station coordinates and disturbed sound velocity.The practical data was used to test the effectiveness of our method.The results show that the Root Mean Square(RMS)errors of the residual values of the traditional methods without sound velocity correction,based on quadratic polynomial correction and based on cubic B-spline function correction are 1.43 ms,0.44 ms and 0.21 ms,respectively.The inversion model with sound velocity correction can effectively eliminate the systematic error caused by the change of SSS,and significantly improve the positioning accuracy of the seafloor geodetic stations. 展开更多
关键词 GNSS-Acoustic sound speed structure temporal variation seafloor positioning
下载PDF
The profile of sound speed and dissolved oxygen in the polymetallic nodules depositional area in the Western Pacific
2
作者 Bowen LI Yonggang JIA +1 位作者 Zhihan FAN Kai LI 《Journal of Oceanology and Limnology》 SCIE CAS CSCD 2023年第6期2090-2100,共11页
With the consumption of terrestrial metal resources,the exploitation of deep-sea polymetallic nodule minerals has been widely concerned around the world.Therefore,the environmental impact of deep-sea polymetallic nodu... With the consumption of terrestrial metal resources,the exploitation of deep-sea polymetallic nodule minerals has been widely concerned around the world.Therefore,the environmental impact of deep-sea polymetallic nodule mining cannot be ignored.However,duo to the lacks in stable and safe deep-sea(the depth>1000 m)vertical profile observation systems and consequently in long-term in-situ observation data,the sound speed and dissolved oxygen and the other water environment factors in the deposition areas of polymetallic nodules remains poorly understood.In this study,a deep-sea in-situ observation system was designed and deployed,and the water environment data of the polymetallic nodule deposition area were collected and analyzed.Result shows that the dissolved oxygen in the depth of 0–600 m was mainly affected by biological factors,while that in the area deeper than 600 m was affected by physical factors.The sound speed in the water body was mainly affected by temperature and pressure.At depths below 840 m,the sound speed is mainly controlled by temperature,and at depths between 840 m and 5700 m,the sound speed is mainly controlled by pressure.The correlations of sound speed vs.pressure and vs.temperature were regressed into equation.The resuspension of sediments rich in various metals may result in the reduction of dissolved oxygen and the improvement of redox potential.This environmental impact caused by a single sediment resuspension could last for 24 h or more.These findings enrich the understanding of the background value of the water environment in the polymetallic nodule deposition area. 展开更多
关键词 deep sea dissolved oxygen redox potential sound speed CONDUCTIVITY
下载PDF
Sound speed profiles in high spatiotemporal resolution using multigrid three-dimensional variational method:a coastal experiment off northern Shandong Peninsula
3
作者 Guangchao HOU Jingsheng ZHAI +4 位作者 Qi SHAO Yanling ZHAO Wei LI Guijun HAN Kangzhuang LIANG 《Journal of Oceanology and Limnology》 SCIE CAS CSCD 2023年第1期57-71,共15页
It is essential to ac quire sound speed profiles(SSPs)in high-precision spatiotemporal resolution for undersea acoustic activities.However,conventional observation methods cannot obtain high-resolution SSPs.Besides,S ... It is essential to ac quire sound speed profiles(SSPs)in high-precision spatiotemporal resolution for undersea acoustic activities.However,conventional observation methods cannot obtain high-resolution SSPs.Besides,S SPs are complex and changeable in time and space,especially in coastal areas.We proposed a new space-time multigrid three-dimensional variational method with weak constraint term(referred to as STC-MG3DVar)to construct high-precision spatiotemporal resolution SSPs in coastal areas,in which sound velocity is defined as the analytical variable,and the Chen-Millero sound velocity empirical formula is introduced as a weak constraint term into the cost function of the STC-MG3DVar.The spatiotemporal correlation of sound velocity observations is taken into account in the STC-MG3DVar method,and the multi-scale information of sound velocity observations from long waves to short waves can be successively extracted.The weak constraint term can optimize sound velocity by the physical relationship between sound velocity and temperature-salinity to obtain more reasonable and accurate SSPs.To verify the accuracy of the STC-MG3DVar,SSPs observations and CTD observations(temperature observations,salinity observations)are obtained from field experiments in the northern coastal area of the Shandong Peninsula.The average root mean square error(RMSE)of the STC-MG3DVar-constructed SSPs is 0.132 m/s,and the STC-MG3DVar method can improve the SSPs construction accuracy over the space-time multigrid 3DVar without weak constraint term(ST-MG3DVar)by 10.14%and over the spatial multigrid 3DVar with weak constraint term(SC-MG3DVar)by 44.19%.With the advantage of the constraint term and the spatiotemporal correlation information,the proposed STC-MG3DVar method works better than the ST-MG3DVar and the SCMG3DVar in constructing high-precision spatiotemporal re solution SSPs. 展开更多
关键词 space-time multigrid 3DVar sound speed profiles temperature SALinITY spatiotemporal correlation multiscale
下载PDF
Fine Sand and Clay Sediment Acoustic Properties of the Novel Sediment Sample from the Arabian Sea:Experimental Investigations and Biot−Stoll Model Validation
4
作者 Shahabuddin SHAIKH HUANG Yi-wang +1 位作者 ZHANG Ze-chuan Habib Hussain ZUBERI 《China Ocean Engineering》 SCIE EI CSCD 2024年第1期169-180,共12页
The present study explores the physical and acoustic characteristics of fine sand and clay in novel seabed marine sediments from of Pakistan coastline of the Arabian Sea.The measured physical parameters included mean ... The present study explores the physical and acoustic characteristics of fine sand and clay in novel seabed marine sediments from of Pakistan coastline of the Arabian Sea.The measured physical parameters included mean grain size,mass density,bulk density,salinity,porosity,permeability,pore size and mineralogical composition.Acoustic properties,including sound speed and attenuation,in the high frequency range of 90-170 kHz were analyzed.A controlled laboratory setup with the acoustic transmission method and Fourier transform techniques was utilized to examine the sound propagation and absorption of novel seabed sediments.The standard deviation of mean sound speed in fresh water was 0.75 m/s,and attenuation was observed in the range of 0.43 to 0.61 dB/m.The mean sound velocity in sand and clay varied from 1706 to 1709 m/s and 1602 to 1608 m/s,respectively.Corresponding average attenuation was observed at 80 to 93 dB/m in sandy sediments and from 31.8 to 38.6 dB/m in clayey sediments.Sound velocity variation within sandy sediment is low,consistent with expected results,and smaller than the predicted uncertainty.However,clay sediment exhibited a positive linear correlation and low sound speed variation.Attenuation increased linearly with frequency for both sediments.Finally,the laboratory results were validated by using the Biot−Stoll model.The dispersion of sound speed in sandy and clayey sediments was consistent with the predictions of the Biot−Stoll model.Measured attenuation aligned more with Biot−Stoll model predictions due to improved permeability,tortuosity and pore size parameter fitting. 展开更多
关键词 physical and acoustic characteristics marine sediments sound speed ATTENUATION Biot−Stoll model
下载PDF
An improved algorithm based on equivalent sound velocity profile method at large incident angle
5
作者 Qianqian Li Qian Tong +3 位作者 Fanlin Yang Qi Li Zhihao Juan Yu Luo 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2024年第2期161-167,共7页
With the development of ultra-wide coverage technology,multibeam echo-sounder(MBES)system has put forward higher requirements for localization accuracy and computational efficiency of ray tracing method.The classical ... With the development of ultra-wide coverage technology,multibeam echo-sounder(MBES)system has put forward higher requirements for localization accuracy and computational efficiency of ray tracing method.The classical equivalent sound speed profile(ESSP)method replaces the measured sound velocity profile(SVP)with a simple constant gradient SVP,reducing the computational workload of beam positioning.However,in deep-sea environment,the depth measurement error of this method rapidly increases from the central beam to the edge beam.By analyzing the positioning error of the ESSP method at edge beam,it is discovered that the positioning error increases monotonically with the incident angle,and the relationship between them could be expressed by polynomial function.Therefore,an error correction algorithm based on polynomial fitting is obtained.The simulation experiment conducted on an inclined seafloor shows that the proposed algorithm exhibits comparable efficiency to the original ESSP method,while significantly improving bathymetry accuracy by nearly eight times in the edge beam. 展开更多
关键词 equivalent sound speed profile ray tracing method large incident angle edge beam deep sea error correction multibeam echo-sounder system
下载PDF
Reconstructions of time-evolving sound-speed fields perturbed by deformed and dispersive internal solitary waves in shallow water
6
作者 李沁然 孙超 +1 位作者 谢磊 黄晓冬 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第12期404-415,共12页
The high-fidelity reconstruction of sound speeds is crucial for predicting acoustic propagation in shallow water where internal solitary waves(ISWs)are prevalent.Mapping temperatures from time series to spatial fields... The high-fidelity reconstruction of sound speeds is crucial for predicting acoustic propagation in shallow water where internal solitary waves(ISWs)are prevalent.Mapping temperatures from time series to spatial fields is an approach widely used to reproduce the sound speed perturbed by deformed internal waves.However,wave-shape distortions are inherent in the modeling results.This paper analyzes the formation mechanism and dynamic behavior of the distorted waveform that is shown to arise from the mismatch between the modeled and real propagation speeds of individual solitons within an ISW packet.To mitigate distortions,a reconstruction method incorporating the dispersion property of an ISW train is proposed here.The principle is to assign each soliton a real speed observed in the experiment.Then,the modeled solitons propagate at their intrinsic speeds,and the packet disperses naturally with time.The method is applied to reconstruct the sound speed perturbed by ISWs in the South China Sea.The mean and median of the root-mean-square error between the reconstructed and measured sound speeds are below 2 m/s.The modeled shape deformations and packet dispersion agree well with observations,and the waveform distortion is reduced compared with the original method.This work ensures the high fidelity of waveguide-environment reconstructions and facilitates the investigation of sound propagation in the future. 展开更多
关键词 internal solitary wave deformation DISPERSION sound speed
下载PDF
Enhancement of photoacoustic tomography in the tissue with speed-of-sound variance using ultrasound computed tomography 被引量:1
7
作者 程任翔 陶超 刘晓峻 《Chinese Physics B》 SCIE EI CAS CSCD 2015年第11期63-69,共7页
The speed-of-sound variance will decrease the imaging quality of photoacoustic tomography in acoustically inhomo- geneous tissue. In this study, ultrasound computed tomography is combined with photoacoustic tomography... The speed-of-sound variance will decrease the imaging quality of photoacoustic tomography in acoustically inhomo- geneous tissue. In this study, ultrasound computed tomography is combined with photoacoustic tomography to enhance the photoacoustic tomography in this situation. The speed-of-sound information is recovered by ultrasound computed to- mography. Then, an improved delay-and-sum method is used to reconstruct the image from the photoacoustic signals. The simulation results validate that the proposed method can obtain a better photoacoustic tomography than the conventional method when the speed-of-sound variance is increased. In addition, the influences of the speed-of-sound variance and the fan-angle on the image quality are quantitatively explored to optimize the image scheme. The proposed method has a good performance even when the speed-of-sound variance reaches 14.2%. Furthermore, an optimized fan angle is revealed, which can keep the good image quality with a low cost of hardware. This study has a potential value in extending the biomedical application of photoacoustic tomography. 展开更多
关键词 photoacoustic tomography speed of sound ultrasound computed tomography
下载PDF
Relationships between the sound speed ratio and physical properties of surface sediments in the South Yellow Sea 被引量:2
8
作者 Guanbao Li Jingqiang Wang +6 位作者 Xiangmei Meng Baohua Liu Guangming Kan Guozhong Han Qingfeng Hua Yanliang Pei Lei Sun 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2021年第4期65-73,共9页
Building empirical equations is an effective way to link the acoustic and physical properties of sediments.These equations play an important role in the prediction of sediments sound speeds required in underwater acou... Building empirical equations is an effective way to link the acoustic and physical properties of sediments.These equations play an important role in the prediction of sediments sound speeds required in underwater acoustics.Although many empirical equations coupling acoustic and physical properties have been developed over the past few decades,further confirmation of their applicability by obtaining large amounts of data,especially for equations based on in situ acoustic measurement techniques,is required.A sediment acoustic survey in the South Yellow Sea from 2009 to 2010 revealed statistical relationships between the in situ sound speed and sediment physical properties.To improve the comparability of these relationships with existing empirical equations,the present study calculated the ratio of the in situ sediment sound speed to the bottom seawater sound speed,and established the relationships between the sound speed ratio and the mean grain size,density and porosity of the sediment.The sound speed of seawater at in situ measurement stations was calculated using a perennially averaged seawater sound speed map by an interpolation method.Moreover,empirical relations between the index of impedance and the sound speed and the physical properties were established.The results confirmed that the existing empirical equations between the in situ sound speed ratio and the density and porosity have general suitability for application.This study also considered that a multiple-parameter equation coupling the sound speed ratio to both the porosity and the mean grain size may be more useful for predicting the sound speed than an equation coupling the sound speed ratio to the mean grain size. 展开更多
关键词 sound speed ratio index of impedance physical properties surface sediment in situ measurement South Yellow Sea
下载PDF
Sound propagation in inhomogeneous waveguides with sound-speed profiles using the multimodal admittance method 被引量:1
9
作者 李琪 刘娟 郭威 《Chinese Physics B》 SCIE EI CAS CSCD 2020年第1期346-356,共11页
The multimodal admittance method and its improvement are presented to deal with various aspects in underwater acoustics,mostly for the sound propagation in inhomogeneous waveguides with sound-speed profiles,arbitrary-... The multimodal admittance method and its improvement are presented to deal with various aspects in underwater acoustics,mostly for the sound propagation in inhomogeneous waveguides with sound-speed profiles,arbitrary-shaped liquid-like scatterers,and range-dependent environments.In all cases,the propagation problem governed by the Helmholtz equation is transformed into initial value problems of two coupled first-order evolution equations with respect to the modal components of field quantities(sound pressure and its derivative),by projecting the Helmholtz equation on a constructed orthogonal and complete local basis.The admittance matrix,which is the modal representation of Direchlet-to-Neumann operator,is introduced to compute the first-order evolution equations with no numerical instability caused by evanescent modes.The fourth-order Magnus scheme is used for the numerical integration of differential equations in the numerical implementation.The numerical experiments of sound field in underwater inhomogeneous waveguides generated by point sources are performed.Besides,the numerical results computed by simulation software COMSOL Multiphysics are given to validate the correction of the multimodal admittance method.It is shown that the multimodal admittance method is an efficient and stable numerical method to solve the wave propagation problem in inhomogeneous underwater waveguides with sound-speed profiles,liquid-like scatterers,and range-dependent environments.The extension of the method to more complicated waveguides such as horizontally stratified waveguides is available. 展开更多
关键词 inhomogeneous waveguide multimodal admittance method sound-speed profiles admittance matrix
下载PDF
Comprehensive Study of Inversion Methods for Sound Speed Profiles in the South China Sea
10
作者 LI Jiemeihui SHI Yang +1 位作者 YANG Yixin CHEN Cheng 《Journal of Ocean University of China》 SCIE CAS CSCD 2022年第6期1487-1494,共8页
Traditional acquisition method of sound speed profiles using hydro-acoustic instruments is accurate but time-consuming and costly.To overcome this problem,some inversion methods have been developed over the last few d... Traditional acquisition method of sound speed profiles using hydro-acoustic instruments is accurate but time-consuming and costly.To overcome this problem,some inversion methods have been developed over the last few decades.In this study,a comprehensive comparison of two inversion methods–the acoustic inversion method(AIM)and the satellite observation reconstruction method(SOR)–is presented.For AIM,the sound speed profile is first parameterized by the empirical orthogonal function(EOF)and the optimal parameters are searched by simulated annealing algorithm with respect to the cross-correlation function of the receiving signal and the simulation signal.For SOR,remotely sensed data are used to construct sound speed profiles.An experiment was conducted in the northeast of the South China Sea to verify the two methods.Both methods can obtain sound speed profiles quickly and cheaply.Compared with the sound speed profiles obtained by a conductivity-temperature-depth(CTD)instrument,the root-meansquare-error(RMSE)of AIM is 0.55 m s^(−1) and that of SOR is 1.71 m s^(−1).It is clear that AIM provides better inversion performance than SOR.Another primary benefit of AIM is that this method has no limitation to the inversion depth.The simulation results of sound propagation in regard to the inversed sound speed profiles show that the transmission losses of AIM and CTD are consistent and that of SOR is adversely affected by the inversion error of the sound speed and the inversion depth.But SOR has particular advantages in the inversion coverage.Together,all of these advantages make the AIM particularly valuable in practice. 展开更多
关键词 sound speed profile inVERSION Eof CROSS-CORRELATION remote sensing South China Sea
下载PDF
Speed of Sound in Atmosphere of the Earth
11
作者 Vladimir G. Kirtskhalia 《Open Journal of Acoustics》 2012年第2期80-85,共6页
It is demonstrated that contemporary conception on adiabaticity of sound in the Earth atmosphere is fair in sufficient approximation only for altitudes z ≤ 103 m. At higher altitudes adiabaticity of sound is violated... It is demonstrated that contemporary conception on adiabaticity of sound in the Earth atmosphere is fair in sufficient approximation only for altitudes z ≤ 103 m. At higher altitudes adiabaticity of sound is violated and essential dependence of its speed on altitude is revealed which is related to heterogeneity of the atmosphere in gravitation field of the Earth. It became possible to reveal the factor of gravity field due to the fact that in the equation of the state of atmosphere considered to be ideal gas, the entropy s is taken into consideration and is written down as ρ = (p, s) instead of generally accepted ρ = ρ(p) which is fair only for isentropic media and is not applicable to the Earth. Such approach enabled to determine that apart from adiabatic mechanism of generation of sound wave there exists isobaric one and exactly this mechanism leads to dependence of sound speed on altitude which is the same as dependence on density. 展开更多
关键词 speed of sound ATMOSPHERE COMPRESSIBILITY inCOMPRESSIBILITY
下载PDF
Rapid environmental assessment in the South China Sea:Improved inversion of sound speed profile using remote sensing data
12
作者 Ke Qu Binbin Zou Jianbo Zhou 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2022年第7期78-83,共6页
Complex perturbations in the profile and the sparsity of samples often limit the validity of rapid environmental assessment(REA)in the South China Sea(SCS).In this paper,the remote sensing data were used to estimate s... Complex perturbations in the profile and the sparsity of samples often limit the validity of rapid environmental assessment(REA)in the South China Sea(SCS).In this paper,the remote sensing data were used to estimate sound speed profile(SSP)with the self-organizing map(SOM)method in the SCS.First,the consistency of the empirical orthogonal functions was examined by using k-means clustering.The clustering results indicated that SSPs in the SCS have a similar perturbation nature,which means the inverted grid could be expanded to the entire SCS to deal with the problem of sparsity of the samples without statistical improbability.Second,a machine learning method was proposed that took advantage of the topological structure of SOM to significantly improve their accuracy.Validation revealed promising results,with a mean reconstruction error of 1.26 m/s,which is 1.16 m/s smaller than the traditional single empirical orthogonal function regression(sEOF-r)method.By violating the constraints of linear inversion,the topological structure of the SOM method showed a smaller error and better robustness in the SSP estimation.The improvements to enhance the accuracy and robustness of REA in the SCS were offered.These results suggested a potential utilization of REA in the SCS based on satellite data and provided a new approach for SSP estimation derived from sea surface data. 展开更多
关键词 South China Sea sound speed profile empirical orthogonal function self-organizing maps
下载PDF
An improved positioning model of deep-seafloor datum point at large incidence angle
13
作者 Qianqian LI Shoulian CAO +2 位作者 Fanlin YANG Yu LUO Qian TONG 《Journal of Oceanology and Limnology》 SCIE CAS CSCD 2024年第1期90-100,共11页
The inhomogeneous sound speed in seawater causes refraction of sound waves,and the elimination of the refraction effect is essential to the accuracy of underwater acoustic positioning.The raytracing method is an indis... The inhomogeneous sound speed in seawater causes refraction of sound waves,and the elimination of the refraction effect is essential to the accuracy of underwater acoustic positioning.The raytracing method is an indispensable tool for effectively handling problems.However,this method has a conflict between localization accuracy and computational quantity.The equivalent sound speed profile(ESSP)method uses a simple sound speed profile(SSP)instead of the actual complex SSP,which can improve positioning precision but with residual error.The residual error is especially non-negligible in deep water and at large beam incidence angles.By analyzing the residual error of the ESSP method through a simulation,an empirical formula of error is presented.The data collected in the sailing circle mode(large incidence angle)of the South China Sea are used for verification.The experiments show that compared to the ESSP method,the improved algorithm has higher positioning precision and is more efficient than the ray-tracing method. 展开更多
关键词 underwater acoustic positioning seafloor datum points large incident angle equivalent sound speed profile(ESSP) deep water
下载PDF
Basis functions for shallow-water temperature profiles based on the internal-wave eigenmodes
14
作者 Qianqian Li Shoulian Cao +2 位作者 Yu Luo Kai Zhang Fanlin Yang 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2023年第2期56-64,共9页
The shallow-water temperature profile is typically parameterized using a few empirical orthogonal function(EOF)coefficients.However,when the experimental area is poorly known or highly variable,the adaptability of the... The shallow-water temperature profile is typically parameterized using a few empirical orthogonal function(EOF)coefficients.However,when the experimental area is poorly known or highly variable,the adaptability of the EOFs will be significantly reduced.In this study,a new set of basis functions,generated by combining the internal-wave eigenmodes with the average temperature gradient,is developed for characterizing the temperature perturbations.Temperature profiles recorded by a thermistor chain in the South China Sea in 2015 are processed and analyzed.Compared to the EOFs,the new set of basis functions has higher reconstruction accuracy and adaptability;it is also more stable in ocean regions that have internal waves. 展开更多
关键词 temperature profile basis function internal-wave eigenmode Eof sound speed profile
下载PDF
Unleashing the Power of Information Theory: Enhancing Accuracy in Modeling Physical Phenomena
15
作者 Boris Menin 《Journal of Applied Mathematics and Physics》 2023年第3期760-779,共20页
When building a model of a physical phenomenon or process, scientists face an inevitable compromise between the simplicity of the model (qualitative-quantitative set of variables) and its accuracy. For hundreds of yea... When building a model of a physical phenomenon or process, scientists face an inevitable compromise between the simplicity of the model (qualitative-quantitative set of variables) and its accuracy. For hundreds of years, the visual simplicity of a law testified to the genius and depth of the physical thinking of the scientist who proposed it. Currently, the desire for a deeper physical understanding of the surrounding world and newly discovered physical phenomena motivates researchers to increase the number of variables considered in a model. This direction leads to an increased probability of choosing an inaccurate or even erroneous model. This study describes a method for estimating the limit of measurement accuracy, taking into account the stage of model building in terms of storage, transmission, processing and use of information by the observer. This limit, due to the finite amount of information stored in the model, allows you to select the optimal number of variables for the best reproduction of the observed object and calculate the exact values of the threshold discrepancy between the model and the phenomenon under study in measurement theory. We consider two examples: measurement of the speed of sound and measurement of physical constants. 展开更多
关键词 Finite information Quantity international System of Units MODELLinG Physical Constant speed of sound
下载PDF
Acoustic sound speed profile inversion based on orthogonal matching pursuit 被引量:5
16
作者 Qianqian Li Juan Shi +3 位作者 Zhenglin Li Yu Luo Fanlin Yang Kai Zhang 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2019年第11期149-157,共9页
The estimation of ocean sound speed profiles(SSPs)requires the inversion of an acoustic field using limited observations.Such inverse problems are underdetermined,and require regularization to ensure physically realis... The estimation of ocean sound speed profiles(SSPs)requires the inversion of an acoustic field using limited observations.Such inverse problems are underdetermined,and require regularization to ensure physically realistic solutions.The empirical orthonormal function(EOF)is capable of a very large compression of the data set.In this paper,the non-linear response of the sound pressure to SSP is linearized using a first order Taylor expansion,and the pressure is expanded in a sparse domain using EOFs.Since the parameters of the inverse model are sparse,compressive sensing(CS)can help solve such underdetermined problems accurately,efficiently,and with enhanced resolution.Here,the orthogonal matching pursuit(OMP)is used to estimate range-independent acoustic SSPs using the simulated acoustic field.The superior resolution of OMP is demonstrated with the SSP data from the South China Sea experiment.By shortening the duration of the training set,the temporal correlation between EOF and test sets is enhanced,and the accuracy of sound velocity inversion is improved.The SSP estimation error versus depth is calculated,and the 99%confidence interval of error is within±0.6 m/s.The 82%of mean absolute error(MAE)is less than 1 m/s.It is shown that SSPs can be well estimated using OMP. 展开更多
关键词 ACOUSTIC sound speed ocean ACOUSTICS COMPRESSIVE sensing ORTHOGONAL matching PURSUIT
下载PDF
Matched-field inversion of sound speed profile in shallow water using a parallel genetic algorithm 被引量:9
17
作者 余炎欣 李整林 何利 《Chinese Journal of Oceanology and Limnology》 SCIE CAS CSCD 2010年第5期1080-1085,共6页
A sound speed profile plays an important role in shallow water sound propagation.Concurrent with in-situ measurements,many inversion methods,such as matched-field inversion,have been put forward to invert the sound sp... A sound speed profile plays an important role in shallow water sound propagation.Concurrent with in-situ measurements,many inversion methods,such as matched-field inversion,have been put forward to invert the sound speed profile from acoustic signals.However,the time cost of matched-field inversion may be very high in replica field calculations.We studied the feasibility and robustness of an acoustic tomography scheme with matched-field processing in shallow water,and described the sound speed profile by empirical orthogonal functions.We analyzed the acoustic signals from a vertical line array in ASIAEX2001 in the East China Sea to invert sound speed profiles with estimated empirical orthogonal functions and a parallel genetic algorithm to speed up the inversion.The results show that the inverted sound speed profiles are in good agreement with conductivity-temperature-depth measurements.Moreover,a posteriori probability analysis is carried out to verify the inversion results. 展开更多
关键词 匹配场反演 并行遗传算法 声速剖面 浅水 经验正交函数 信号转化 匹配场处理 声音传播
下载PDF
Study on Sound-Speed Dispersion in A Sandy Sediment at Frequency Ranges of 0.5–3 kHz and 90–170 kHz 被引量:4
18
作者 YU Sheng-qi LIU Bao-hua +2 位作者 YU Kai-ben KAN Guang-ming YANG Zhi-guo 《China Ocean Engineering》 SCIE EI CSCD 2017年第1期103-113,共11页
In order to study the properties of sound-speed dispersion in a sandy sediment, the sound speed was measured both at high frequency (90-170 kHz) and low frequency (0.5-3 kHz) in laboratory environments. At high fr... In order to study the properties of sound-speed dispersion in a sandy sediment, the sound speed was measured both at high frequency (90-170 kHz) and low frequency (0.5-3 kHz) in laboratory environments. At high frequency, a sampling measurement was conducted with boiled and uncooked sand samples collected from the bottom of a large water tank. The sound speed was directly obtained through transmission measurement using single source and single hydrophone. At low frequency, an in situ measurement was conducted in the water tank, where the sandy sediment had been homogeneously paved at the bottom for a long time. The sound speed was indirectly inverted according to the traveling time of signals received by three buried hydrophones in the sandy sediment and the geometry in experiment. The results show that the mean sound speed is approximate 1710-1713 m/s with a weak positive gradient in the sand sample after being boiled (as a method to eliminate bubbles as much as possible) at high frequency, which agrees well with the predictions of Biot theory, the effective density fluid model (EDFM) and Buckingham's theory. However, the sound speed in the uncooked sandy sediment obviously decreases (about 80%) both at high frequency and low frequency due to plenty of bubbles in existence. And the sound-speed dispersion performs a weak negative gradient at high frequency. Finally, a water-unsaturated Biot model is presented for trying to explain the decrease of sound speed in the sandy sediment with plenty of bubbles. 展开更多
关键词 acoustic properties of sediment sound-speed dispersion sandy sediment BUBBLES
下载PDF
ESTIMATION OF SOUNDING ABILITY OF A BRILLOUIN LIDAR IN THE EAST CHINA SEA 被引量:1
19
作者 吴东 宋小全 刘智深 《Chinese Journal of Oceanology and Limnology》 SCIE CAS CSCD 2001年第3期193-199,共7页
Vertical profiles of sound speed in the sea can be measured by using laser excited Brillouin scattering. In this paper the dependence of the accuracy of sound speed measurement on the accuracy of the Brillouin shift m... Vertical profiles of sound speed in the sea can be measured by using laser excited Brillouin scattering. In this paper the dependence of the accuracy of sound speed measurement on the accuracy of the Brillouin shift measurement is analyzed. We calculated the maximum detecting depths of sound speed to an accuracy of 1 m/s by lidar with different laser pulse energy, platform altitude, telescope aperture and lidar effective attenuation coefficient. The estimation of sounding ability in the East China Sea is made in some stations. These data can be used in the design of Brillouin Lidar for the China Sea. 展开更多
关键词 评价 探通术 海洋声速 布里渊散射
下载PDF
Reconstructing Sound Speed Profiles with Sea Surface Data 被引量:1
20
作者 CHEN Cheng JIN Tao ZHOU Zhiquan 《Aerospace China》 2018年第4期38-43,共6页
Ocean sound speed profile(SSP) is the key factor affecting acoustic propagation. The acquisition of SSPsin real time with high precision is meaningful for underwater activities. By means of the remote sensing method, ... Ocean sound speed profile(SSP) is the key factor affecting acoustic propagation. The acquisition of SSPsin real time with high precision is meaningful for underwater activities. By means of the remote sensing method, thesea surface data could be obtained in near-real time. Typically, the subsurface fields are correlated with the sea surfaceparameters. Thus, the SSPs could be obtained by means of satellite remote sensing. In this paper, the history as wellas the current research over the reconstruction of subsurface fields by means of sea surface data is introduced. Thentwo methods to reconstruct the SSPs with sea surface data, including the linear regression method using the empiricalorthogonal function, and the self-organizing method based on the big data theory, are described in detail in the paper. 展开更多
关键词 sound speed Profile(SSP) SEA surface DATA linear regression METHOD SELF-ORGANIZinG METHOD
下载PDF
上一页 1 2 41 下一页 到第
使用帮助 返回顶部