This article offers a simple but rigorous proof of Brouwer’s fixed point theorem using Sperner’s Lemma.The general method I have used so far in the proof is mainly to convert the n-dimensional shapes to the correspo...This article offers a simple but rigorous proof of Brouwer’s fixed point theorem using Sperner’s Lemma.The general method I have used so far in the proof is mainly to convert the n-dimensional shapes to the corresponding case under the Sperner’s Labeling and apply the Sperner’s Lemma to solve the question.展开更多
We consider the five-point boundary value problem for a fifth-order differential equation, where the nonlinearity is superlinear at both the origin and +infinity. Our method of proof combines the Kneser’s theorem wit...We consider the five-point boundary value problem for a fifth-order differential equation, where the nonlinearity is superlinear at both the origin and +infinity. Our method of proof combines the Kneser’s theorem with the well-known from combinatorial topology Sperner’s lemma. We also notice that our geometric approach is strongly based on the associated vector field.展开更多
基金by Dr Kemp from National Mathematics and Science College.
文摘This article offers a simple but rigorous proof of Brouwer’s fixed point theorem using Sperner’s Lemma.The general method I have used so far in the proof is mainly to convert the n-dimensional shapes to the corresponding case under the Sperner’s Labeling and apply the Sperner’s Lemma to solve the question.
文摘We consider the five-point boundary value problem for a fifth-order differential equation, where the nonlinearity is superlinear at both the origin and +infinity. Our method of proof combines the Kneser’s theorem with the well-known from combinatorial topology Sperner’s lemma. We also notice that our geometric approach is strongly based on the associated vector field.