Carbon monosulfide molecular ion (CS+), which plays an important role in various research fields, has long been attracting much interest. Because of the unstable and transient nature of CS+, its electronic states ...Carbon monosulfide molecular ion (CS+), which plays an important role in various research fields, has long been attracting much interest. Because of the unstable and transient nature of CS+, its electronic states have not been well investigated. In this paper, the electronic states of CS+ are studied by employing the internally contracted multireference configuration interaction method, and taking into account relativistic effects (scalar plus spin–orbit coupling). The spin–orbit coupling effects are considered via the state-interacting method with the full Breit–Pauli Hamiltonian. The potential energy curves of 18 Λ–S states correlated with the two lowest dissociation limits of CS+ molecular ion are calculated, and those of 10 lowest Ω states generated from the 6 lowest Λ–S states are also worked out. The spectroscopic constants of the bound states are evaluated, and they are in good agreement with available experimental results and theoretical values. With the aid of analysis of Λ–S composition of Ω states at different bond lengths, the avoided crossing phenomena in the electronic states of CS+ are illuminated. Finally, the single ionization spectra of CS (X1Σ+) populating the CS+(X2Σ1/2+, A2Π3/2, A2Π1/2, and B2Σ1/2+) states are simulated. The vertical ionization potentials for X2Σ1/2+, A2Π3/2, A2Π1/2, and B2Σ1/2+ states are calculated to be 11.257, 12.787, 12.827, and 15.860 eV, respectively, which are accurate compared with previous experimental results, within an error margin of 0.08 eV^0.2 eV.展开更多
Cd F molecule, which plays an important role in a great variety of research fields, has long been subject to numerous researchers. Due to the unstable nature and heavy atom Cd containing in the Cd F molecule, electron...Cd F molecule, which plays an important role in a great variety of research fields, has long been subject to numerous researchers. Due to the unstable nature and heavy atom Cd containing in the Cd F molecule, electronic states of the molecule have not been well studied. In this paper, high accurate ab initio calculations on the Cd F molecule have been performed at the multi-reference configuration interaction level including Davidson correction(MRCI + Q). Adiabatic potential energy curves(PECs) of the 14 low-lying Λ–S states correlating with the two lowest dissociation limits Cd(~1S_g) + F(~2P_u) and Cd(~3P_u) + F(~2P_u) have been constructed. For the bound Λ–S and ? states, the dominant electronic configurations and spectroscopic constants are obtained,and the calculated spectroscopic constants of bound states are consistent with previous experimental results. The dipole moments(DMs) of 2 Σ+ and 2Π are determined, and the spin–orbit(SO) matrix elements between each pair of X2Σ+, 22Σ+, 12Π, and 22Π are obtained. The results indicate that the sudden changes of DMs and SO matrix elements arise from the variation of the electronic configurations around the avoided crossing region. Moreover,the Franck–Condon factors(FCFs), the transition dipole moments(TDMs), and radiative lifetimes of low-lying states-the ground state X2Σ+are determined. Finally, the transitional properties of 22Π–X2Σ+and 22Σ+–X2Σ+are studied. Based on our computed spectroscopic information of Cd F, the feasibility and challenge for laser cooling of Cd F molecule are discussed.展开更多
There is no any spin rotational construction for zero spin particle, Casimir operator and the thired component of zero spin particle areandrespectively. Further, there are no spin interactions between zero spin partic...There is no any spin rotational construction for zero spin particle, Casimir operator and the thired component of zero spin particle areandrespectively. Further, there are no spin interactions between zero spin particle and other spin particles. This paper shows: in Spin Topological Space, STS [1], the third component of zero spin particle possesses non-zero eigenvalues besides original zero value, this leads to a miraculous spin interaction phenomenon between zero spin particle and other spin particles. In STS, zero spin particle could "dissolve other spin particles", degrade the values of their Casimir operator, and decay these spin particles into other forms of spin particle.展开更多
In this paper a model for suggesting a smart parking that involves a set of electric cars is presented to auction the management ability and correct parking planning in reserve spinning market, secondary energy market...In this paper a model for suggesting a smart parking that involves a set of electric cars is presented to auction the management ability and correct parking planning in reserve spinning market, secondary energy market and grid. Parking interest under various scenarios is analyzed and its effective results are presented by a valid model. Besides, particle swarm optimization algorithm is used for calculating maximum benefit.展开更多
基金Project supported by the National Basic Research Program of China(973 Program)(Grant No.2013CB922200)the National Natural Science Foundation of China(Grant Nos.11034003,11074095,and 11274140)+1 种基金the Natural Science Foundation of Heilongjiang Province,China(Grant No.QC2011C092)the Scientific Research Fund of Heilongjiang Provincial Education Department,China(Grant No.12531751)
文摘Carbon monosulfide molecular ion (CS+), which plays an important role in various research fields, has long been attracting much interest. Because of the unstable and transient nature of CS+, its electronic states have not been well investigated. In this paper, the electronic states of CS+ are studied by employing the internally contracted multireference configuration interaction method, and taking into account relativistic effects (scalar plus spin–orbit coupling). The spin–orbit coupling effects are considered via the state-interacting method with the full Breit–Pauli Hamiltonian. The potential energy curves of 18 Λ–S states correlated with the two lowest dissociation limits of CS+ molecular ion are calculated, and those of 10 lowest Ω states generated from the 6 lowest Λ–S states are also worked out. The spectroscopic constants of the bound states are evaluated, and they are in good agreement with available experimental results and theoretical values. With the aid of analysis of Λ–S composition of Ω states at different bond lengths, the avoided crossing phenomena in the electronic states of CS+ are illuminated. Finally, the single ionization spectra of CS (X1Σ+) populating the CS+(X2Σ1/2+, A2Π3/2, A2Π1/2, and B2Σ1/2+) states are simulated. The vertical ionization potentials for X2Σ1/2+, A2Π3/2, A2Π1/2, and B2Σ1/2+ states are calculated to be 11.257, 12.787, 12.827, and 15.860 eV, respectively, which are accurate compared with previous experimental results, within an error margin of 0.08 eV^0.2 eV.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11604052,11404180,and 11574114)the Natural Science Foundation of Heilongjiang Province,China(Grant No.A2015010)+3 种基金the Natural Science Foundation of Anhui Province,China(Grant No.1608085MA10)the International Science&Technology Cooperation Program of Anhui Province,China(Grant No.1403062027)the University Nursing Program for Young Scholars with Creative Talents in Heilongjiang Province,China(Grant No.2015095)the Natural Science Foundation of Jilin Province,China(Grant No.20150101003JC)
文摘Cd F molecule, which plays an important role in a great variety of research fields, has long been subject to numerous researchers. Due to the unstable nature and heavy atom Cd containing in the Cd F molecule, electronic states of the molecule have not been well studied. In this paper, high accurate ab initio calculations on the Cd F molecule have been performed at the multi-reference configuration interaction level including Davidson correction(MRCI + Q). Adiabatic potential energy curves(PECs) of the 14 low-lying Λ–S states correlating with the two lowest dissociation limits Cd(~1S_g) + F(~2P_u) and Cd(~3P_u) + F(~2P_u) have been constructed. For the bound Λ–S and ? states, the dominant electronic configurations and spectroscopic constants are obtained,and the calculated spectroscopic constants of bound states are consistent with previous experimental results. The dipole moments(DMs) of 2 Σ+ and 2Π are determined, and the spin–orbit(SO) matrix elements between each pair of X2Σ+, 22Σ+, 12Π, and 22Π are obtained. The results indicate that the sudden changes of DMs and SO matrix elements arise from the variation of the electronic configurations around the avoided crossing region. Moreover,the Franck–Condon factors(FCFs), the transition dipole moments(TDMs), and radiative lifetimes of low-lying states-the ground state X2Σ+are determined. Finally, the transitional properties of 22Π–X2Σ+and 22Σ+–X2Σ+are studied. Based on our computed spectroscopic information of Cd F, the feasibility and challenge for laser cooling of Cd F molecule are discussed.
文摘There is no any spin rotational construction for zero spin particle, Casimir operator and the thired component of zero spin particle areandrespectively. Further, there are no spin interactions between zero spin particle and other spin particles. This paper shows: in Spin Topological Space, STS [1], the third component of zero spin particle possesses non-zero eigenvalues besides original zero value, this leads to a miraculous spin interaction phenomenon between zero spin particle and other spin particles. In STS, zero spin particle could "dissolve other spin particles", degrade the values of their Casimir operator, and decay these spin particles into other forms of spin particle.
文摘In this paper a model for suggesting a smart parking that involves a set of electric cars is presented to auction the management ability and correct parking planning in reserve spinning market, secondary energy market and grid. Parking interest under various scenarios is analyzed and its effective results are presented by a valid model. Besides, particle swarm optimization algorithm is used for calculating maximum benefit.