Kinetically constrained spin systems are toy models of supercooled liquids and amorphous solids. In this perspective,we revisit the prototypical Fredrickson–Andersen(FA) kinetically constrained model from the viewpoi...Kinetically constrained spin systems are toy models of supercooled liquids and amorphous solids. In this perspective,we revisit the prototypical Fredrickson–Andersen(FA) kinetically constrained model from the viewpoint of K-core combinatorial optimization. Each kinetic cluster of the FA system, containing all the mutually visitable microscopic occupation configurations, is exactly the solution space of a specific instance of the K-core attack problem. The whole set of different jammed occupation patterns of the FA system is the configuration space of an equilibrium K-core problem. Based on recent theoretical results achieved on the K-core attack and equilibrium K-core problems, we discuss the thermodynamic spin glass phase transitions and the maximum occupation density of the fully unfrozen FA kinetic cluster, and the minimum occupation density and extreme vulnerability of the partially frozen(jammed) kinetic clusters. The equivalence between K-core attack and the fully unfrozen FA kinetic cluster also implies a new way of sampling K-core attack solutions.展开更多
In view of the low resolution and accuracy of traditional magnetometer,a method of microwave frequency modulation technology based on nitrogen-vacancy(NV)center in diamond for magnetic detection was proposed.The magne...In view of the low resolution and accuracy of traditional magnetometer,a method of microwave frequency modulation technology based on nitrogen-vacancy(NV)center in diamond for magnetic detection was proposed.The magnetometer studied can reduce the frequency noise of system and improve the magnetic sensitivity by microwave frequency modulation.Firstly,ESR spectra by sweeping the microwave frequency was obtained.Further,the microwave frequency modulated was gained through the mixed high-frequency sinusoidal modulation signal generated by signal generator.In addition,the frequency through the lock-in amplifier was locked,and the signal which was proportional to the first derivative of the spectrum was obtained.The experimental results show that the sensitivity of magnetic field detection can reach 17.628 nT/Hz based on microwave frequency modulation technology.The method realizes high resolution and sensitivity for magnetic field detection.展开更多
The dynamic response and stochastic resonance of a kinetic Ising spin system (ISS) subject to the joint action of an external field of weak sinusoidal modulation and stochastic white-nolse are studied by solving the...The dynamic response and stochastic resonance of a kinetic Ising spin system (ISS) subject to the joint action of an external field of weak sinusoidal modulation and stochastic white-nolse are studied by solving the mean-field equation of motion based on Glauber dynamics. The periodically driven stochastic ISS shows that the characteristic stochastic resonance as well as nonequilibrium dynamic phase transition (NDPT) occurs when the frequency ω and amplitude h0 of driving field, the temperature t of the system and noise intensity D are all specifically in accordance with each other in quantity. There exist in the system two typical dynamic phases, referred to as dynamic disordered paramagnetic and ordered ferromagnetic phases respectively, corresponding to a zero- and a unit-dynamic order parameter. The NDPT boundary surface of the system which separates the dynamic paramagnetic phase from the dynamic ferromagnetic phase in the 3D parameter space of ho-t-D is also investigated. An interesting dynamical ferromagnetic phase with an intermediate order parameter of 0.66 is revealed for the first time in the ISS subject to the perturbation of a joint determinant and stochastic field. The intermediate order dynamical ferromagnetic phase is dynamically metastable in nature and owns a peculiar characteristic in its stability as well as the response to external driving field as compared with a fully order dynamic ferromagnetic phase.展开更多
Within the framework of the effective-field theory with self-spin correlations and the differential operator technique, the ground state magnetizations of the biaxial crystal field spin system on the honeycomb lattice...Within the framework of the effective-field theory with self-spin correlations and the differential operator technique, the ground state magnetizations of the biaxial crystal field spin system on the honeycomb lattices have been studied. The influences of the biaxial crystal field on the magnetization in the ground state have been investigated in detail.展开更多
The thermodynamics and quantum phase transitions of two typically alternating double-chain systems are investigated by Green's function theory.(i) For the completely antiferromagnetic(AFM) alternating double-chai...The thermodynamics and quantum phase transitions of two typically alternating double-chain systems are investigated by Green's function theory.(i) For the completely antiferromagnetic(AFM) alternating double-chain, the low-temperature antiferromagnetism with gapped behavior is observed, which is in accordance with the experimental result. In a magnetic field, we unveil the ground state phase diagram with zero plateau, 1/2 plateau, and polarized ferromagnetic(FM) phases,as a result of the intra-cluster spin-singlet competition. Furthermore, the Gr ¨uneisen ratio is an excellent tool to identify the quantum criticality and testify various quantum phases.(ii) For the antiferromagnetically coupled FM alternating chains,the 1/2 magnetization plateau and double-peak structure of specific heat appear, which are also observed experimentally.Nevertheless, the M–h curve shows an anomalous behavior in an ultra-low field, which is ascribed to the effectively weak Haldane-like state, demonstrated by the two-site entanglement entropy explicitly.展开更多
Within the framework of an effective field approximation, the effects of single-ion anisotropy and different trimodal transverse fields of two sublattices on the critical properties of the mixed spin-1/2 and spin-1 Is...Within the framework of an effective field approximation, the effects of single-ion anisotropy and different trimodal transverse fields of two sublattices on the critical properties of the mixed spin-1/2 and spin-1 Ising system are investigated on the simple cubic lattice. A smaller single-lon anisotropy can magnify magnetic ordering phases and a larger one can depress magnetic ordering phase for T-Ω1/2 space at low temperatures, while a smaller single-ion anisotropy can hardly change the value of critical transverse field for T-Ω1 space. On the other hand, influences of two different trimodal transverse fields concentrations on tricritical points and magnetic ordering phases take on some interesting results in T-D space. The main reason comes from the common action of single-ion anisotropy, different transverse fields and two trimodal distributions.展开更多
Quantum entanglement represents a fundamental feature of quantum many-body systems. We combine tripartite entanglement with quantum renormalization group theory to study the quantum critical phenomena. The Ising model...Quantum entanglement represents a fundamental feature of quantum many-body systems. We combine tripartite entanglement with quantum renormalization group theory to study the quantum critical phenomena. The Ising model and the Heisenberg X X Z model in the presence of the Dzyaloshinskii–Moriya interaction are adopted as the research objects. We identify that the tripartite entanglement can signal the critical point. The derivative of tripartite entanglement shows singularity as the spin chain size increases. Furthermore, the intuitive scaling behavior of the system selected is studied and the result allows us to precisely quantify the correlation exponent by utilizing the power law.展开更多
In order to understand the properties of the spin system with orbital degeneracy, we first study the ground state of the SU(4) spin-orbital model on a square lattice. The mean-field results suggest that for a small Hu...In order to understand the properties of the spin system with orbital degeneracy, we first study the ground state of the SU(4) spin-orbital model on a square lattice. The mean-field results suggest that for a small Hund's interaction, the flavor liquid state is stable against the solid state, but with sufficient deviation from the SU(4) limit the long-range order may be attained in 2D system. Furthermore, we employ a variational approach to calculate the phase diagram of the ground state and the temperature-dependent susceptibility by taking into account the Hund's interaction and the anisotropy in orbital wavefunctions. Finally, the implications for the experimental observations on the material, , are discussed.展开更多
Using linear spin-wave theory we have investigated the thermal properties of frustrated dimerized Heisenberg ferri- magnetic system with alternating spins and on one- and two-dimensional lattices. At intermediate temp...Using linear spin-wave theory we have investigated the thermal properties of frustrated dimerized Heisenberg ferri- magnetic system with alternating spins and on one- and two-dimensional lattices. At intermediate temperature the susceptibility and the specific heat shows a minimum and a Schottky-like peak respectively. Frustration enhances the antiferromagnetic aspect in the system by causing a left-shift in the peak and the minimum which indicates that the antiferromagnetic behavior overbalance the ferromagnetic one at earlier temperatures. The effect of dimerization is different for the two form of the coupling constants. While the expanded form;, boosts the antiferro- magnetic behavior of the system by making a left-shift of the peak and the minimum, the distance-variable coupling constant;shifts them to the right opposing, for a while, the appearance of the antiferromagnetic aspect. The slope of after the minimum shows that the aspect of ferrimagnetic system with spins (3/2, 1) is more antiferromagnetic and the system with (3/2, 1/2) is ferromagnetic. Free energy and magnetization decreased by increasing dimerization as well as frustration. Both of them scales with PACS numbers: 75.10.Jm, 75.50.Ge.展开更多
This paper investigates the design of an attitude autopilot for a dual-channel controlled spinning glideguided projectile(SGGP),addressing model uncertainties and external disturbances.Based on fixed-time stable theor...This paper investigates the design of an attitude autopilot for a dual-channel controlled spinning glideguided projectile(SGGP),addressing model uncertainties and external disturbances.Based on fixed-time stable theory,a disturbance observer with integral sliding mode and adaptive techniques is proposed to mitigate total disturbance effects,irrespective of initial conditions.By introducing an error integral signal,the dynamics of the SGGP are transformed into two separate second-order fully actuated systems.Subsequently,employing the high-order fully actuated approach and a parametric approach,the nonlinear dynamics of the SGGP are recast into a constant linear closed-loop system,ensuring that the projectile's attitude asymptotically tracks the given goal with the desired eigenstructure.Under the proposed composite control framework,the ultimately uniformly bounded stability of the closed-loop system is rigorously demonstrated via the Lyapunov method.Validation of the effectiveness of the proposed attitude autopilot design is provided through extensive numerical simulations.展开更多
The spin pumping effect in magnetic heterostructures and multilayers is a highly effective method for the generationand transmission of spin currents. In the increasingly prominent synthetic antiferromagnetic structur...The spin pumping effect in magnetic heterostructures and multilayers is a highly effective method for the generationand transmission of spin currents. In the increasingly prominent synthetic antiferromagnetic structures, the two ferromagneticlayers demonstrate in-phase and out-of-phase states, corresponding to acoustic and optical precession modes. Withinthis context, our study explores the spin pumping effect in Py/Ru/Py synthetic antiferromagnetic structures across differentmodes. The heightened magnetic damping resulting from the spin pumping effect in the in-phase state initially decreaseswith increasing Py thickness before stabilizing. Conversely, in the out-of-phase state, the amplified damping exceeds thatof the in-phase state, suggesting a greater spin relaxation within this configuration, which demonstrates sensitivity to alterationsin static exchange interactions. These findings contribute to advancing the application of synthetic antiferromagneticstructures in magnonic devices.展开更多
With an extended Su–Schrieffer–Heeger model and Green's function method, the spin–orbit coupling(SOC) effects on spin admixture of electronic states and quantum transport in organic devices are investigated. Th...With an extended Su–Schrieffer–Heeger model and Green's function method, the spin–orbit coupling(SOC) effects on spin admixture of electronic states and quantum transport in organic devices are investigated. The role of lattice distortion induced by the strong electron–lattice interaction in organics is clarified in contrast with a uniform chain. The results demonstrate an enhanced SOC effect on the spin admixture of frontier eigenstates by the lattice distortion at a larger SOC,which is explained by the perturbation theory. The quantum transport under the SOC is calculated for both nonmagnetic and ferromagnetic electrodes. A more notable SOC effect on total transmission and current is observed for ferromagnetic electrodes, where spin filtering induced by spin-flipped transmission and suppression of magnetoresistance are obtained.Unlike the spin admixture, a stronger SOC effect on transmission exists for the uniform chain rather than the organic lattices with distortion. The reason is attributed to the modified spin-polarized conducting states in the electrodes by lattice configuration, and hence the spin-flip transmission, instead of the spin admixture of eigenstates. This work is helpful to understand the SOC effect in organic spin valves in the presence of lattice distortion.展开更多
Understanding the photoexcitation induced spin dynamics in ferromagnetic metals is important for the design of photo-controlled ultrafast spintronic device.In this work,by the ab initio nonadiabatic molecular dynamics...Understanding the photoexcitation induced spin dynamics in ferromagnetic metals is important for the design of photo-controlled ultrafast spintronic device.In this work,by the ab initio nonadiabatic molecular dynamics simulation,we have studied the spin dynamics induced by spin–orbit coupling(SOC)in Co and Fe using both spin-diabatic and spin-adiabatic representations.In Co system,it is found that the Fermi surface(E_(F))is predominantly contributed by the spin-minority states.The SOC induced spin flip will occur for the photo-excited spin-majority electrons as they relax to the E_(F),and the spin-minority electrons tend to relax to the EFwith the same spin through the electron–phonon coupling(EPC).The reduction of spin-majority electrons and the increase of spin-minority electrons lead to demagnetization of Co within100 fs.By contrast,in Fe system,the E_(F) is dominated by the spin-majority states.In this case,the SOC induced spin flip occurs for the photo-excited spin-minority electrons,which leads to a magnetization enhancement.If we move the E_(F) of Fe to higher energy by 0.6eV,the E_(F) will be contributed by the spin-minority states and the demagnetization will be observed again.This work provides a new perspective for understanding the SOC induced spin dynamics mechanism in magnetic metal systems.展开更多
Owing to rapid developments in spintronics,spin-based logic devices have emerged as promising tools for next-generation computing technologies.This paper provides a comprehensive review of recent advancements in spin ...Owing to rapid developments in spintronics,spin-based logic devices have emerged as promising tools for next-generation computing technologies.This paper provides a comprehensive review of recent advancements in spin logic devices,particularly focusing on fundamental device concepts rooted in nanomagnets,magnetoresistive random access memory,spin–orbit torques,electric-field modu-lation,and magnetic domain walls.The operation principles of these devices are comprehensively analyzed,and recent progress in spin logic devices based on negative differential resistance-enhanced anomalous Hall effect is summarized.These devices exhibit reconfigur-able logic capabilities and integrate nonvolatile data storage and computing functionalities.For current-driven spin logic devices,negative differential resistance elements are employed to nonlinearly enhance anomalous Hall effect signals from magnetic bits,enabling reconfig-urable Boolean logic operations.Besides,voltage-driven spin logic devices employ another type of negative differential resistance ele-ment to achieve logic functionalities with excellent cascading ability.By cascading several elementary logic gates,the logic circuit of a full adder can be obtained,and the potential of voltage-driven spin logic devices for implementing complex logic functions can be veri-fied.This review contributes to the understanding of the evolving landscape of spin logic devices and underscores the promising pro-spects they offer for the future of emerging computing schemes.展开更多
The spin superconductor state is the spin-polarized triplet exciton condensate,which can be viewed as a counterpart of the charge superconductor state.As an analogy of the charge Josephson effect,the spin Josephson ef...The spin superconductor state is the spin-polarized triplet exciton condensate,which can be viewed as a counterpart of the charge superconductor state.As an analogy of the charge Josephson effect,the spin Josephson effect can be generated in the spin superconductor/normal metal/spin superconductor junctions.Here we study the spin supercurrent in the Josephson junctions consisting of two spin superconductors with noncollinear spin polarizations.For the Josephson junctions with out-of-plane spin polarizations,the possibleπ-state spin supercurrent appears due to the Fermi momentum-splitting Andreev-like reflections at the normal metal/spin superconductor interfaces.For the Josephson junctions with in-plane spin polarizations,the anomalous spin supercurrent appears and is driven by the misorientation angle of the in-plane polarizations.The symmetry analysis shows that the appearance of the anomalous spin Josephson current is possible when the combined symmetry of the spin rotation and the time reversal is broken.展开更多
Spin–momentum locking is a key feature of the topological surface state, which plays an important role in spintronics.The electrical detection of current-induced spin polarization protected by the spin–momentum lock...Spin–momentum locking is a key feature of the topological surface state, which plays an important role in spintronics.The electrical detection of current-induced spin polarization protected by the spin–momentum locking in nonmagnetic systems provides a new platform for developing spintronics, while previous studies were mostly based on magnetic materials.In this study, the spin transport measurement of Dirac semimetal Cd_(3)As_(2) was studied by three-terminal geometry, and a hysteresis loop signal with high resistance and low resistance state was observed. The hysteresis was reversed by reversing the current direction, which illustrates the spin–momentum locking feature of Cd_(3)As_(2). Furthermore, we realized the on–off states of the spin signals through electric modulation of the Fermi arc via the three-terminal configuration, which enables the great potential of Cd_(3)As_(2) in spin field-effect transistors.展开更多
Light alkanes non-oxidative dehydrogenation is an attractive non-oil route for olefins production.The alkane dehydrogenation reaction is limited by thermodynamic equilibrium,and the C-H bond cleavage is commonly consi...Light alkanes non-oxidative dehydrogenation is an attractive non-oil route for olefins production.The alkane dehydrogenation reaction is limited by thermodynamic equilibrium,and the C-H bond cleavage is commonly considered as the rate-determined step.The valence state of metal sites in catalysts will influence the stabilization of the vital intermediate(i.e.,C_(x)H_(y)...M^(δ+)...H)during the C-H bond cleavage process,which in turn affects the catalytic reactivity.Herein,we explicitly investigated the effect of different valence states of framework-Fe in silicate-1 zeolite on ethane dehydrogenation reaction through the combination of experimental and theoretical study.Fe(Ⅱ)-S-1 and Fe(Ⅲ)-S-1 catalysts are successfully synthesized by ligand-assisted in situ crystallization method,In-situ C_(2)H_6-FTIR shows the higher coverage of hydrocarbon intermediates on Fe(Ⅱ)-S-1,Under the same evaluation co nditio n,Fe(Ⅱ)-S-1 exhibits a higher space time yield of ethylene.Density functional theory(DFT)results reveal that the more coordinate-unsaturated and electron-enriched Fe(Ⅱ)sites boost the first C-H bond activation by slight deformation and efficient electron donation with C_(2)H_(5)^(*)species.Remarkably,the second C-H bond cleavage on Fe(Ⅱ)-S-1 undergoes a spin-crossing process from quintet state to triplet state,which involves a two-electro n-two-orbital interaction,further promoting the formation of ethylene.Microkinetic analysis is consistent with the experimental and DFT results.This work could provide methodology for elucidating the effect of metal valence states on catalytic performance as well as offer guidance for designing more efficient Fe-zeolite catalysts.展开更多
For the past few years,germanium-based semiconductor spintronics has attracted considerable interest due to its potential for integration into mainstream semiconductor technology.The main challenges in the development...For the past few years,germanium-based semiconductor spintronics has attracted considerable interest due to its potential for integration into mainstream semiconductor technology.The main challenges in the development of modern semiconductor spintronics are the generation,detection,and manipulation of spin currents.Here,the transport characteristics of a spin current generated by spin pumping through a GeBi semiconductor barrier in Y_(3)Fe_(5)O_(12)/GeBi/Pt heterostructures were investigated systematically.The effective spin-mixing conductance and inverse spin Hall voltage to quantitatively describe the spin transport characteristics were extracted.The spin-injection efficiency in the Y_(3)Fe_(5)O_(12)/GeBi/Pt heterostructures is comparable to that of the Y_(3)Fe_(5)O_(12)/Pt bilayer,and the inverse spin Hall voltage exponential decays with the increase in the barrier thickness.Furthermore,the band gap of the GeBi layer was tuned by changing the Bi content.The spin-injection efficiency at the YIG/semiconductor interface and the spin transportation within the semiconductor barrier are related to the band gap of the GeBi layer.Our results may be used as guidelines for the fabrication of efficient spin transmission structures and may lead to further studies on the impacts of different kinds of barrier materials.展开更多
Orientation-dependent transport properties induced by anisotropic molecules are enticing in single-molecule junctions.Here,using the first-principles method,we theoretically investigate spin transport properties and p...Orientation-dependent transport properties induced by anisotropic molecules are enticing in single-molecule junctions.Here,using the first-principles method,we theoretically investigate spin transport properties and photoresponse characteristics in trimesic acid magnetic single-molecule junctions with different molecular adsorption orientations and electrode contact sites.The transport calculations indicate that a single-molecule switch and a significant enhancement of spin transport and photoresponse can be achieved when the molecular adsorption orientation changes from planar geometry to upright geometry.The maximum spin polarization of current and photocurrent in upright molecular junctions exceeds 90%.Moreover,as the Ni tip electrode moves,the tunneling magnetoresistance of upright molecular junctions can be increased to 70%.The analysis of the spin-dependent PDOS elucidates that the spinterfaces between organic molecule and ferromagnetic electrodes are modulated by molecular adsorption orientation,where the molecule in upright molecular junctions yields higher spin polarization.Our theoretical work paves the way for designing spintronic devices and optoelectronic devices with anisotropic functionality base on anisotropic molecules.展开更多
The entropy change in a spin system coupled to a magnetic field is investigated by solving an evolution equation for a quantum spin system. Entropy of the system is discussed and the exchange of entropy between the sp...The entropy change in a spin system coupled to a magnetic field is investigated by solving an evolution equation for a quantum spin system. Entropy of the system is discussed and the exchange of entropy between the spins and field can be studied. The full quantum treatment of spins and field shows that the coherent nature of this field is very important for reaching the spin echo.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 12247104 and 12047503)。
文摘Kinetically constrained spin systems are toy models of supercooled liquids and amorphous solids. In this perspective,we revisit the prototypical Fredrickson–Andersen(FA) kinetically constrained model from the viewpoint of K-core combinatorial optimization. Each kinetic cluster of the FA system, containing all the mutually visitable microscopic occupation configurations, is exactly the solution space of a specific instance of the K-core attack problem. The whole set of different jammed occupation patterns of the FA system is the configuration space of an equilibrium K-core problem. Based on recent theoretical results achieved on the K-core attack and equilibrium K-core problems, we discuss the thermodynamic spin glass phase transitions and the maximum occupation density of the fully unfrozen FA kinetic cluster, and the minimum occupation density and extreme vulnerability of the partially frozen(jammed) kinetic clusters. The equivalence between K-core attack and the fully unfrozen FA kinetic cluster also implies a new way of sampling K-core attack solutions.
基金National Natural Science Foundation of China(Nos.51635011,61503346,51727808)National Science Foundation of Shanxi Province(No.201701D121080)
文摘In view of the low resolution and accuracy of traditional magnetometer,a method of microwave frequency modulation technology based on nitrogen-vacancy(NV)center in diamond for magnetic detection was proposed.The magnetometer studied can reduce the frequency noise of system and improve the magnetic sensitivity by microwave frequency modulation.Firstly,ESR spectra by sweeping the microwave frequency was obtained.Further,the microwave frequency modulated was gained through the mixed high-frequency sinusoidal modulation signal generated by signal generator.In addition,the frequency through the lock-in amplifier was locked,and the signal which was proportional to the first derivative of the spectrum was obtained.The experimental results show that the sensitivity of magnetic field detection can reach 17.628 nT/Hz based on microwave frequency modulation technology.The method realizes high resolution and sensitivity for magnetic field detection.
基金Project supported by the Natural Science Foundation of Guangdong Province, China (Grant No 031554).
文摘The dynamic response and stochastic resonance of a kinetic Ising spin system (ISS) subject to the joint action of an external field of weak sinusoidal modulation and stochastic white-nolse are studied by solving the mean-field equation of motion based on Glauber dynamics. The periodically driven stochastic ISS shows that the characteristic stochastic resonance as well as nonequilibrium dynamic phase transition (NDPT) occurs when the frequency ω and amplitude h0 of driving field, the temperature t of the system and noise intensity D are all specifically in accordance with each other in quantity. There exist in the system two typical dynamic phases, referred to as dynamic disordered paramagnetic and ordered ferromagnetic phases respectively, corresponding to a zero- and a unit-dynamic order parameter. The NDPT boundary surface of the system which separates the dynamic paramagnetic phase from the dynamic ferromagnetic phase in the 3D parameter space of ho-t-D is also investigated. An interesting dynamical ferromagnetic phase with an intermediate order parameter of 0.66 is revealed for the first time in the ISS subject to the perturbation of a joint determinant and stochastic field. The intermediate order dynamical ferromagnetic phase is dynamically metastable in nature and owns a peculiar characteristic in its stability as well as the response to external driving field as compared with a fully order dynamic ferromagnetic phase.
基金Project supported by the Natural Science Foundation of Liaoning province (Grant No 20041021) and the Scientific Research Foundation of the Educational Department of Liaoning province (Grant No 2004C006).
文摘Within the framework of the effective-field theory with self-spin correlations and the differential operator technique, the ground state magnetizations of the biaxial crystal field spin system on the honeycomb lattices have been studied. The influences of the biaxial crystal field on the magnetization in the ground state have been investigated in detail.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11204157,11174179,and 11247020)the Hubei Provincial Natural Science Foundation,China(Grant No.D20131307)the China Three Gorges University Project(Grant No.KJ2011B068)
文摘The thermodynamics and quantum phase transitions of two typically alternating double-chain systems are investigated by Green's function theory.(i) For the completely antiferromagnetic(AFM) alternating double-chain, the low-temperature antiferromagnetism with gapped behavior is observed, which is in accordance with the experimental result. In a magnetic field, we unveil the ground state phase diagram with zero plateau, 1/2 plateau, and polarized ferromagnetic(FM) phases,as a result of the intra-cluster spin-singlet competition. Furthermore, the Gr ¨uneisen ratio is an excellent tool to identify the quantum criticality and testify various quantum phases.(ii) For the antiferromagnetically coupled FM alternating chains,the 1/2 magnetization plateau and double-peak structure of specific heat appear, which are also observed experimentally.Nevertheless, the M–h curve shows an anomalous behavior in an ultra-low field, which is ascribed to the effectively weak Haldane-like state, demonstrated by the two-site entanglement entropy explicitly.
基金The project supported partly by the Key Projects of Natural Science Foundation of Jiangsu Province of China under Grant No. 03KJA140117 and the 0pen Foundation of Jiangsu Key Laboratory of Thin Films under Grant No. K2022
文摘Within the framework of an effective field approximation, the effects of single-ion anisotropy and different trimodal transverse fields of two sublattices on the critical properties of the mixed spin-1/2 and spin-1 Ising system are investigated on the simple cubic lattice. A smaller single-lon anisotropy can magnify magnetic ordering phases and a larger one can depress magnetic ordering phase for T-Ω1/2 space at low temperatures, while a smaller single-ion anisotropy can hardly change the value of critical transverse field for T-Ω1 space. On the other hand, influences of two different trimodal transverse fields concentrations on tricritical points and magnetic ordering phases take on some interesting results in T-D space. The main reason comes from the common action of single-ion anisotropy, different transverse fields and two trimodal distributions.
基金Supported by the Natural Science Foundation of Jiangsu Province under Grant No BK20171397the Foundation for Encouragement of Department of General Educationthe Pre-Research Foundation of Army Engineering University of PLA
文摘Quantum entanglement represents a fundamental feature of quantum many-body systems. We combine tripartite entanglement with quantum renormalization group theory to study the quantum critical phenomena. The Ising model and the Heisenberg X X Z model in the presence of the Dzyaloshinskii–Moriya interaction are adopted as the research objects. We identify that the tripartite entanglement can signal the critical point. The derivative of tripartite entanglement shows singularity as the spin chain size increases. Furthermore, the intuitive scaling behavior of the system selected is studied and the result allows us to precisely quantify the correlation exponent by utilizing the power law.
文摘In order to understand the properties of the spin system with orbital degeneracy, we first study the ground state of the SU(4) spin-orbital model on a square lattice. The mean-field results suggest that for a small Hund's interaction, the flavor liquid state is stable against the solid state, but with sufficient deviation from the SU(4) limit the long-range order may be attained in 2D system. Furthermore, we employ a variational approach to calculate the phase diagram of the ground state and the temperature-dependent susceptibility by taking into account the Hund's interaction and the anisotropy in orbital wavefunctions. Finally, the implications for the experimental observations on the material, , are discussed.
文摘Using linear spin-wave theory we have investigated the thermal properties of frustrated dimerized Heisenberg ferri- magnetic system with alternating spins and on one- and two-dimensional lattices. At intermediate temperature the susceptibility and the specific heat shows a minimum and a Schottky-like peak respectively. Frustration enhances the antiferromagnetic aspect in the system by causing a left-shift in the peak and the minimum which indicates that the antiferromagnetic behavior overbalance the ferromagnetic one at earlier temperatures. The effect of dimerization is different for the two form of the coupling constants. While the expanded form;, boosts the antiferro- magnetic behavior of the system by making a left-shift of the peak and the minimum, the distance-variable coupling constant;shifts them to the right opposing, for a while, the appearance of the antiferromagnetic aspect. The slope of after the minimum shows that the aspect of ferrimagnetic system with spins (3/2, 1) is more antiferromagnetic and the system with (3/2, 1/2) is ferromagnetic. Free energy and magnetization decreased by increasing dimerization as well as frustration. Both of them scales with PACS numbers: 75.10.Jm, 75.50.Ge.
基金supported by the National Natural Science Foundation of China(Grant Nos.52272358 and 62103052)。
文摘This paper investigates the design of an attitude autopilot for a dual-channel controlled spinning glideguided projectile(SGGP),addressing model uncertainties and external disturbances.Based on fixed-time stable theory,a disturbance observer with integral sliding mode and adaptive techniques is proposed to mitigate total disturbance effects,irrespective of initial conditions.By introducing an error integral signal,the dynamics of the SGGP are transformed into two separate second-order fully actuated systems.Subsequently,employing the high-order fully actuated approach and a parametric approach,the nonlinear dynamics of the SGGP are recast into a constant linear closed-loop system,ensuring that the projectile's attitude asymptotically tracks the given goal with the desired eigenstructure.Under the proposed composite control framework,the ultimately uniformly bounded stability of the closed-loop system is rigorously demonstrated via the Lyapunov method.Validation of the effectiveness of the proposed attitude autopilot design is provided through extensive numerical simulations.
基金National Key Research and De-velopment Program of China(Grant No.2023YFA1406603)the National Natural Science Foundation of China(Grant Nos.52071079,12274071,12374112,and T2394473)Jiangsu Funding Program for Excellent Postdoctoral Talent(Grant No.2023ZB491).
文摘The spin pumping effect in magnetic heterostructures and multilayers is a highly effective method for the generationand transmission of spin currents. In the increasingly prominent synthetic antiferromagnetic structures, the two ferromagneticlayers demonstrate in-phase and out-of-phase states, corresponding to acoustic and optical precession modes. Withinthis context, our study explores the spin pumping effect in Py/Ru/Py synthetic antiferromagnetic structures across differentmodes. The heightened magnetic damping resulting from the spin pumping effect in the in-phase state initially decreaseswith increasing Py thickness before stabilizing. Conversely, in the out-of-phase state, the amplified damping exceeds thatof the in-phase state, suggesting a greater spin relaxation within this configuration, which demonstrates sensitivity to alterationsin static exchange interactions. These findings contribute to advancing the application of synthetic antiferromagneticstructures in magnonic devices.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11974215,21933002,and 12274264)。
文摘With an extended Su–Schrieffer–Heeger model and Green's function method, the spin–orbit coupling(SOC) effects on spin admixture of electronic states and quantum transport in organic devices are investigated. The role of lattice distortion induced by the strong electron–lattice interaction in organics is clarified in contrast with a uniform chain. The results demonstrate an enhanced SOC effect on the spin admixture of frontier eigenstates by the lattice distortion at a larger SOC,which is explained by the perturbation theory. The quantum transport under the SOC is calculated for both nonmagnetic and ferromagnetic electrodes. A more notable SOC effect on total transmission and current is observed for ferromagnetic electrodes, where spin filtering induced by spin-flipped transmission and suppression of magnetoresistance are obtained.Unlike the spin admixture, a stronger SOC effect on transmission exists for the uniform chain rather than the organic lattices with distortion. The reason is attributed to the modified spin-polarized conducting states in the electrodes by lattice configuration, and hence the spin-flip transmission, instead of the spin admixture of eigenstates. This work is helpful to understand the SOC effect in organic spin valves in the presence of lattice distortion.
基金support of Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDB0450101)the National Natural Science Foundation of China(Grant Nos.12125408 and 11974322)+1 种基金the Informatization Plan of Chinese Academy of Sciences(Grant No.CAS-WX2021SF-0105)the support of the National Natural Science Foundation of China(Grant No.12174363)。
文摘Understanding the photoexcitation induced spin dynamics in ferromagnetic metals is important for the design of photo-controlled ultrafast spintronic device.In this work,by the ab initio nonadiabatic molecular dynamics simulation,we have studied the spin dynamics induced by spin–orbit coupling(SOC)in Co and Fe using both spin-diabatic and spin-adiabatic representations.In Co system,it is found that the Fermi surface(E_(F))is predominantly contributed by the spin-minority states.The SOC induced spin flip will occur for the photo-excited spin-majority electrons as they relax to the E_(F),and the spin-minority electrons tend to relax to the EFwith the same spin through the electron–phonon coupling(EPC).The reduction of spin-majority electrons and the increase of spin-minority electrons lead to demagnetization of Co within100 fs.By contrast,in Fe system,the E_(F) is dominated by the spin-majority states.In this case,the SOC induced spin flip occurs for the photo-excited spin-minority electrons,which leads to a magnetization enhancement.If we move the E_(F) of Fe to higher energy by 0.6eV,the E_(F) will be contributed by the spin-minority states and the demagnetization will be observed again.This work provides a new perspective for understanding the SOC induced spin dynamics mechanism in magnetic metal systems.
基金sponsored by the National Key Research and Development Program of China(Nos.2017YFA0206202 and 2022YFA1203904)the National Natural Science Foundation of China(No.52271160).
文摘Owing to rapid developments in spintronics,spin-based logic devices have emerged as promising tools for next-generation computing technologies.This paper provides a comprehensive review of recent advancements in spin logic devices,particularly focusing on fundamental device concepts rooted in nanomagnets,magnetoresistive random access memory,spin–orbit torques,electric-field modu-lation,and magnetic domain walls.The operation principles of these devices are comprehensively analyzed,and recent progress in spin logic devices based on negative differential resistance-enhanced anomalous Hall effect is summarized.These devices exhibit reconfigur-able logic capabilities and integrate nonvolatile data storage and computing functionalities.For current-driven spin logic devices,negative differential resistance elements are employed to nonlinearly enhance anomalous Hall effect signals from magnetic bits,enabling reconfig-urable Boolean logic operations.Besides,voltage-driven spin logic devices employ another type of negative differential resistance ele-ment to achieve logic functionalities with excellent cascading ability.By cascading several elementary logic gates,the logic circuit of a full adder can be obtained,and the potential of voltage-driven spin logic devices for implementing complex logic functions can be veri-fied.This review contributes to the understanding of the evolving landscape of spin logic devices and underscores the promising pro-spects they offer for the future of emerging computing schemes.
基金Project supported by the National Key R&D Program of China(Grant No.2022YFA1403601).
文摘The spin superconductor state is the spin-polarized triplet exciton condensate,which can be viewed as a counterpart of the charge superconductor state.As an analogy of the charge Josephson effect,the spin Josephson effect can be generated in the spin superconductor/normal metal/spin superconductor junctions.Here we study the spin supercurrent in the Josephson junctions consisting of two spin superconductors with noncollinear spin polarizations.For the Josephson junctions with out-of-plane spin polarizations,the possibleπ-state spin supercurrent appears due to the Fermi momentum-splitting Andreev-like reflections at the normal metal/spin superconductor interfaces.For the Josephson junctions with in-plane spin polarizations,the anomalous spin supercurrent appears and is driven by the misorientation angle of the in-plane polarizations.The symmetry analysis shows that the appearance of the anomalous spin Josephson current is possible when the combined symmetry of the spin rotation and the time reversal is broken.
基金Project supported by the National Key Research and Development Program of China (Grant Nos.2020YFA0309300 and 2022YFA1403700)the National Natural Science Foundation of China (Grant Nos.12004158,12074162,and 91964201)+2 种基金the Key-Area Research and Development Program of Guangdong Province (Grant No.2018B030327001)Guangdong Provincial Key Laboratory (Grant No.2019B121203002)Guangdong Basic and Applied Basic Research Foundation (Grant No.2022B1515130005)。
文摘Spin–momentum locking is a key feature of the topological surface state, which plays an important role in spintronics.The electrical detection of current-induced spin polarization protected by the spin–momentum locking in nonmagnetic systems provides a new platform for developing spintronics, while previous studies were mostly based on magnetic materials.In this study, the spin transport measurement of Dirac semimetal Cd_(3)As_(2) was studied by three-terminal geometry, and a hysteresis loop signal with high resistance and low resistance state was observed. The hysteresis was reversed by reversing the current direction, which illustrates the spin–momentum locking feature of Cd_(3)As_(2). Furthermore, we realized the on–off states of the spin signals through electric modulation of the Fermi arc via the three-terminal configuration, which enables the great potential of Cd_(3)As_(2) in spin field-effect transistors.
基金the financial support from the National Natural Science Foundation of China (22035009,22178381)the National Key R&D Program of China (2021YFA1501301,2021YFC2901100)。
文摘Light alkanes non-oxidative dehydrogenation is an attractive non-oil route for olefins production.The alkane dehydrogenation reaction is limited by thermodynamic equilibrium,and the C-H bond cleavage is commonly considered as the rate-determined step.The valence state of metal sites in catalysts will influence the stabilization of the vital intermediate(i.e.,C_(x)H_(y)...M^(δ+)...H)during the C-H bond cleavage process,which in turn affects the catalytic reactivity.Herein,we explicitly investigated the effect of different valence states of framework-Fe in silicate-1 zeolite on ethane dehydrogenation reaction through the combination of experimental and theoretical study.Fe(Ⅱ)-S-1 and Fe(Ⅲ)-S-1 catalysts are successfully synthesized by ligand-assisted in situ crystallization method,In-situ C_(2)H_6-FTIR shows the higher coverage of hydrocarbon intermediates on Fe(Ⅱ)-S-1,Under the same evaluation co nditio n,Fe(Ⅱ)-S-1 exhibits a higher space time yield of ethylene.Density functional theory(DFT)results reveal that the more coordinate-unsaturated and electron-enriched Fe(Ⅱ)sites boost the first C-H bond activation by slight deformation and efficient electron donation with C_(2)H_(5)^(*)species.Remarkably,the second C-H bond cleavage on Fe(Ⅱ)-S-1 undergoes a spin-crossing process from quintet state to triplet state,which involves a two-electro n-two-orbital interaction,further promoting the formation of ethylene.Microkinetic analysis is consistent with the experimental and DFT results.This work could provide methodology for elucidating the effect of metal valence states on catalytic performance as well as offer guidance for designing more efficient Fe-zeolite catalysts.
基金Project supported by the National Key Research and Development Program of China(Grant No.2021YFA0718701)the China Postdoctoral Science Foundation(Grant No.2022M722888)the National Natural Science Foundation of China(Grant Nos.12174347 and 12004340).
文摘For the past few years,germanium-based semiconductor spintronics has attracted considerable interest due to its potential for integration into mainstream semiconductor technology.The main challenges in the development of modern semiconductor spintronics are the generation,detection,and manipulation of spin currents.Here,the transport characteristics of a spin current generated by spin pumping through a GeBi semiconductor barrier in Y_(3)Fe_(5)O_(12)/GeBi/Pt heterostructures were investigated systematically.The effective spin-mixing conductance and inverse spin Hall voltage to quantitatively describe the spin transport characteristics were extracted.The spin-injection efficiency in the Y_(3)Fe_(5)O_(12)/GeBi/Pt heterostructures is comparable to that of the Y_(3)Fe_(5)O_(12)/Pt bilayer,and the inverse spin Hall voltage exponential decays with the increase in the barrier thickness.Furthermore,the band gap of the GeBi layer was tuned by changing the Bi content.The spin-injection efficiency at the YIG/semiconductor interface and the spin transportation within the semiconductor barrier are related to the band gap of the GeBi layer.Our results may be used as guidelines for the fabrication of efficient spin transmission structures and may lead to further studies on the impacts of different kinds of barrier materials.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.11974217,12204281,and 21933002)the Shandong Provincial Natural Science Foundation (Grant No.ZR2022QA068)。
文摘Orientation-dependent transport properties induced by anisotropic molecules are enticing in single-molecule junctions.Here,using the first-principles method,we theoretically investigate spin transport properties and photoresponse characteristics in trimesic acid magnetic single-molecule junctions with different molecular adsorption orientations and electrode contact sites.The transport calculations indicate that a single-molecule switch and a significant enhancement of spin transport and photoresponse can be achieved when the molecular adsorption orientation changes from planar geometry to upright geometry.The maximum spin polarization of current and photocurrent in upright molecular junctions exceeds 90%.Moreover,as the Ni tip electrode moves,the tunneling magnetoresistance of upright molecular junctions can be increased to 70%.The analysis of the spin-dependent PDOS elucidates that the spinterfaces between organic molecule and ferromagnetic electrodes are modulated by molecular adsorption orientation,where the molecule in upright molecular junctions yields higher spin polarization.Our theoretical work paves the way for designing spintronic devices and optoelectronic devices with anisotropic functionality base on anisotropic molecules.
文摘The entropy change in a spin system coupled to a magnetic field is investigated by solving an evolution equation for a quantum spin system. Entropy of the system is discussed and the exchange of entropy between the spins and field can be studied. The full quantum treatment of spins and field shows that the coherent nature of this field is very important for reaching the spin echo.