With an extended Su–Schrieffer–Heeger model and Green's function method, the spin–orbit coupling(SOC) effects on spin admixture of electronic states and quantum transport in organic devices are investigated. Th...With an extended Su–Schrieffer–Heeger model and Green's function method, the spin–orbit coupling(SOC) effects on spin admixture of electronic states and quantum transport in organic devices are investigated. The role of lattice distortion induced by the strong electron–lattice interaction in organics is clarified in contrast with a uniform chain. The results demonstrate an enhanced SOC effect on the spin admixture of frontier eigenstates by the lattice distortion at a larger SOC,which is explained by the perturbation theory. The quantum transport under the SOC is calculated for both nonmagnetic and ferromagnetic electrodes. A more notable SOC effect on total transmission and current is observed for ferromagnetic electrodes, where spin filtering induced by spin-flipped transmission and suppression of magnetoresistance are obtained.Unlike the spin admixture, a stronger SOC effect on transmission exists for the uniform chain rather than the organic lattices with distortion. The reason is attributed to the modified spin-polarized conducting states in the electrodes by lattice configuration, and hence the spin-flip transmission, instead of the spin admixture of eigenstates. This work is helpful to understand the SOC effect in organic spin valves in the presence of lattice distortion.展开更多
Understanding the photoexcitation induced spin dynamics in ferromagnetic metals is important for the design of photo-controlled ultrafast spintronic device.In this work,by the ab initio nonadiabatic molecular dynamics...Understanding the photoexcitation induced spin dynamics in ferromagnetic metals is important for the design of photo-controlled ultrafast spintronic device.In this work,by the ab initio nonadiabatic molecular dynamics simulation,we have studied the spin dynamics induced by spin–orbit coupling(SOC)in Co and Fe using both spin-diabatic and spin-adiabatic representations.In Co system,it is found that the Fermi surface(E_(F))is predominantly contributed by the spin-minority states.The SOC induced spin flip will occur for the photo-excited spin-majority electrons as they relax to the E_(F),and the spin-minority electrons tend to relax to the EFwith the same spin through the electron–phonon coupling(EPC).The reduction of spin-majority electrons and the increase of spin-minority electrons lead to demagnetization of Co within100 fs.By contrast,in Fe system,the E_(F) is dominated by the spin-majority states.In this case,the SOC induced spin flip occurs for the photo-excited spin-minority electrons,which leads to a magnetization enhancement.If we move the E_(F) of Fe to higher energy by 0.6eV,the E_(F) will be contributed by the spin-minority states and the demagnetization will be observed again.This work provides a new perspective for understanding the SOC induced spin dynamics mechanism in magnetic metal systems.展开更多
The spin superconductor state is the spin-polarized triplet exciton condensate,which can be viewed as a counterpart of the charge superconductor state.As an analogy of the charge Josephson effect,the spin Josephson ef...The spin superconductor state is the spin-polarized triplet exciton condensate,which can be viewed as a counterpart of the charge superconductor state.As an analogy of the charge Josephson effect,the spin Josephson effect can be generated in the spin superconductor/normal metal/spin superconductor junctions.Here we study the spin supercurrent in the Josephson junctions consisting of two spin superconductors with noncollinear spin polarizations.For the Josephson junctions with out-of-plane spin polarizations,the possibleπ-state spin supercurrent appears due to the Fermi momentum-splitting Andreev-like reflections at the normal metal/spin superconductor interfaces.For the Josephson junctions with in-plane spin polarizations,the anomalous spin supercurrent appears and is driven by the misorientation angle of the in-plane polarizations.The symmetry analysis shows that the appearance of the anomalous spin Josephson current is possible when the combined symmetry of the spin rotation and the time reversal is broken.展开更多
The nitrogen-vacancy (NV) center quantum systems have emerged as versatile tools in the field of precision measurement because of their high sensitivity in spin state detection and miniaturization potential as solid-s...The nitrogen-vacancy (NV) center quantum systems have emerged as versatile tools in the field of precision measurement because of their high sensitivity in spin state detection and miniaturization potential as solid-state platforms.In this paper,an acceleration sensing scheme based on NV spin–strain coupling is proposed,which can effectively eliminate the influence of the stray noise field introduced by traditional mechanical schemes.Through the finite element simulation,it is found that the measurement bandwidth of this ensemble NV spin system ranges from 3 kHz to hundreds of kHz with structure√optimization.The required power is at the sub-μW level,corresponding to a noise-limited sensitivity of 6.7×10^(-5) /√Hz.Compared with other types of accelerometers,this micro-sized diamond sensor proposed here has low power consumption,exquisite sensitivity,and integration potential.This research opens a fresh perspective to realize an accelerometer with appealing comprehensive performance applied in biomechanics and inertial measurement fields.展开更多
The dynamics of spin–orbit-coupled Bose–Einstein condensate with parity-time symmetry through a moving obstacle potential is simulated numerically. In the miscible two-component condensate, the formation of the K...The dynamics of spin–orbit-coupled Bose–Einstein condensate with parity-time symmetry through a moving obstacle potential is simulated numerically. In the miscible two-component condensate, the formation of the Kármán vortex street is observed in one component, while ‘the half-quantum vortex street' is observed in the other component. Other patterns of vortex shedding, such as oblique vortex dipoles, V-shaped vortex pairs, irregular turbulence, and combined modes of various wakes, can also be found. The ratio of inter-vortex spacing in one row to the distance between vortex rows is approximately0.18, which is less than the stability condition 0.28 of classical fluid. The drag force acting on the obstacle potential is simulated. The parametric regions of Kármán vortex street and other vortex patterns are calculated. The range of Kármán vortex street is surrounded by the region of combined modes. In addition, spin–orbit coupling disrupts the symmetry of the system and the gain-loss affects the local particle distribution of the system, which leads to the local symmetry breaking of the system, and finally influences the stability of the Kármán vortex street. Finally, we propose an experimental protocol to realize the Kármán vortex street in a system.展开更多
The body of quadruped robot is generally developed with the rigid structure. The mobility of quadruped robot depcnds on the mechanical properties of the body mechanism, It is difficult for quadruped robot with rigid s...The body of quadruped robot is generally developed with the rigid structure. The mobility of quadruped robot depcnds on the mechanical properties of the body mechanism, It is difficult for quadruped robot with rigid structure to achieve better mobility walking or running in the unstructured environment. A kind of bionic flexible body mechanism for quadruped robot is proposed, which is composed of one bionic spine and four pneumatic artificial muscles(PAMs). This kind of body imitates the four-legged creatures' kinematical structure and physical properties, which has the characteristic of changeable stiff'hess, lightweight, flexible and better bionics. The kinematics of body bending is derived, and the coordinated movement between the flexible body and legs is analyzed. The relationship between the body bending angle and the PAM length is obtained. The dynamics of the body bending is derived by the floating coordinate method and Lagrangian method, and the driving tbrce of PAM is determined. The experiment of body bending is conductcd, and the dynamic bending characteristic of bionic flexible body is evaluated. Experimental results show that the bending angle of the bionic flexible body can reach 18. An innovation body mechanism for quadruped robot is proposed, which has the characteristic of flexibility and achieve bending by changing gas pressure of PAMs. The coordinated movement of the body and legs can achieve spinning gait in order to improve the mobility of quadruped robot.展开更多
A nuclear spin gyroscope based on an alkali-metal–noble-gas co-magnetometer operated in spin-exchange relaxationfree(SERF) regime is a promising atomic rotation sensor for its ultra-high fundamental sensitivity. Howe...A nuclear spin gyroscope based on an alkali-metal–noble-gas co-magnetometer operated in spin-exchange relaxationfree(SERF) regime is a promising atomic rotation sensor for its ultra-high fundamental sensitivity. However, the fluctuation of probe light intensity is one of the main technical error sources that limits the bias stability of the gyroscope. Here we propose a novel method to suppress the bias error induced by probe light intensity fluctuations. This method is based on the inherent magnetic field response characteristics of the gyroscope. By the application of a bias magnetic field, the gyroscope can be tuned to a working point where the output signal is insensitive to probe light intensity variation, referred to herein as ‘zero point’, thus the bias error induced by intensity fluctuations can be completely suppressed. The superiority of the method was verified on a K–Rb–21 Ne co-magnetometer, and a bias stability of approximately 0.01°/h was obtained. In addition, the method proposed here can remove the requirement of the closed-loop control of probe light intensity, thereby facilitating miniaturization of the gyroscope volume and improvement of reliability.展开更多
The magnetic and electronic properties of the geometrically frustrated triangular antiferromagnet CuCrO2 are investigated by first principles through density functional theory calculations within the generalized gradi...The magnetic and electronic properties of the geometrically frustrated triangular antiferromagnet CuCrO2 are investigated by first principles through density functional theory calculations within the generalized gradient approxi- mations (GGA)+U scheme. The spin exchange interactions up to the third nearest neighbours in the ab plane as well as the coupling between adjacent layers are calculated to examine the magnetism and spin frustration. It is found that CuCrO2 has a natural two-dimensional characteristic of the magnetic interaction. Using Monte Carlo simulation, we obtain the Neel temperature to be 29.9 K, which accords well with the experimental value of 24 K. Based on non- collinear magnetic structure calculations, we verify that the incommensurate spiral-spin structure with (110) spiral plane is believable for the magnetic ground state, which is consistent with the experimental observations. Due to intra-layer geometric spin frustration, parallel helical-spin chains arise along the a, b, or a+ b directions, each with a screw-rotation angle of about I20°. Our calculations of the density of states show that the spin frustration plays an important role in the change of d-p hybridization, while the spin-orbit coupling has a very limited influence on the electronic structure.展开更多
A dynamic global vegetation model (DGVM) coupled with a land surface model (LSM) is generally initialized using a spin-up process to derive a physically-consistent initial condition. Spin-up forcing, which is the ...A dynamic global vegetation model (DGVM) coupled with a land surface model (LSM) is generally initialized using a spin-up process to derive a physically-consistent initial condition. Spin-up forcing, which is the atmospheric forcing used to drive the coupled model to equilibrium solutions in the spin-up process, varies across earlier studies. In the present study, the impact of the spin-up forcing in the initialization stage on the fractional coverages (FCs) of plant functional type (PFT) in the subsequent simulation stage are assessed in seven classic climate regions by a modified Community Land Model’s Dynamic Global Vegetation Model (CLM-DGVM). Results show that the impact of spin-up forcing is considerable in all regions except the tropical rainforest climate region (TR) and the wet temperate climate region (WM). In the tropical monsoon climate region (TM), the TR and TM transition region (TR-TM), the dry temperate climate region (DM), the highland climate region (H), and the boreal forest climate region (BF), where FCs are affected by climate non-negligibly, the discrepancies in initial FCs, which represent long-term cumulative response of vegetation to different climate anomalies, are large. Moreover, the large discrepancies in initial FCs usually decay slowly because there are trees or shrubs in the five regions. The intrinsic growth timescales of FCs for tree PFTs and shrub PFTs are long, and the variation of FCs of tree PFTs or shrub PFTs can affect that of grass PFTs.展开更多
Diluted ferromagnetic semiconductors(DMSs) that combine the properties of semiconductors with ferromagnetism have potential application in spin-sensitive electronic(spintronic) devices. The search for DMS material...Diluted ferromagnetic semiconductors(DMSs) that combine the properties of semiconductors with ferromagnetism have potential application in spin-sensitive electronic(spintronic) devices. The search for DMS materials exploded after the observation of ferromagnetic ordering in Ⅲ-Ⅴ(Ga,Mn)As films. Recently, a series of DMS compounds isostructural to iron-based superconductors have been reported. Among them, the highest Curie temperature TCo f 230 K has been achieved in(Ba,K)(Zn,Mn)2As2. However, most DMSs, including(Ga,Mn)As, are p-type, i.e., the carriers that mediate the ferromagnetism are holes. For practical applications, DMSs with n-type carriers are also advantageous. Very recently,a new DMS Ba(Zn,Co)2As2 with n-type carriers has been synthesized. Here we summarize the recent progress on this research stream. We will show that the homogeneous ferromagnetism in these bulk form DMSs has been confirmed by microscopic techniques, i.e., nuclear magnetic resonance(NMR) and muon spin rotation(μSR).展开更多
Studies have shown that micro-wedge vortex generators(MVG)can effectively control the flow separation of supersonic boundary layer.In order to improve the flight stability of spinning projectile,the original standard ...Studies have shown that micro-wedge vortex generators(MVG)can effectively control the flow separation of supersonic boundary layer.In order to improve the flight stability of spinning projectile,the original standard 155 mm projectile was taken as an example,and the micro-vanes were mounted at the projectile shoulder to investigate the separation control on the aerodynamic characteristics of projectile.Numerical simulations were performed with the use of DES method for the flow fields of projectiles with and without micro-vanes,and the characteristics of the boundary layer structures and aerodynamic data were compared and discussed.Numerical results show that the micro-vanes can be used to inhibit separation of fluid on projectile surface,and improve the flight stability and firing dispersion of projectile.展开更多
The walking creatures' athletic ability is related to their body' s musculoskeletal system.A kind of musculoskeletal body for quadruped robots is developed,which will be used to assist the leg mechanism to ach...The walking creatures' athletic ability is related to their body' s musculoskeletal system.A kind of musculoskeletal body for quadruped robots is developed,which will be used to assist the leg mechanism to achieve spinning gait in order to improve the robot mobility in unstructured environment.A bionic-flexible-spine model driven by pneumatic artificial muscles(PAMs) is proposed.Because the body has the flexible property,the robot can achieve spinning gait quickly,which is similar to walking creatures by coordinated movement between body bending and legs side-swing.The kinematics of the bending of the musculoskeletal body and side-swing of leg mechanism of quadruped robot for spinning gait are studied.According to the stability analysis of spinning gait,the relationship between body bending angle and leg swing angle can be determined.The PID controller is designed to conduct the bending experiment,and the bending characteristic of the musculoskeletal body is studied.Experimental results show that the biggest bending angle of the musculoskeletal body can reach 30°.展开更多
Using the perturbation method, we theoretically study the spin current and its heat effect in a multichannel quantum wire with Rashba spin-orbit coupling. The heat generated by the spin current is calculated. With the...Using the perturbation method, we theoretically study the spin current and its heat effect in a multichannel quantum wire with Rashba spin-orbit coupling. The heat generated by the spin current is calculated. With the increase of the width of the quantum wire, the spin current and the heat generated both exhibit period oscillations with equal amplitudes. When the quantum-channel number is doubled, the oscillation periods of the spin current and of the heat generated both decrease by a factor of 2. For the spin current js,xy, the amplitude increases with the decrease of the quantum channel; while the amplitude of the spin current js,yx remains the same. Therefore we conclude that the effect of the quantum-channel number on the spin current js,xy is greater than that on the spin current js,yx. The strength of the Rashba spin-orbit coupling is tunable by the gate voltage, and the gate voltage can be varied experimentally, which implies a new method of detecting the. spin current. In addition, we can control the amplitude and the oscillation period of the spin current by controlling the number of the quantum channels. All these characteristics of the spin current will be very important for detecting and controlling the spin current, and especially for designing new spintronic devices in the future.展开更多
The various competing contributions to the anomalous Hall effect in spin-polarized two-dimensional electron gases in the presence of both intrinsic, extrinsic and external electric-field induced spin-orbit coupling we...The various competing contributions to the anomalous Hall effect in spin-polarized two-dimensional electron gases in the presence of both intrinsic, extrinsic and external electric-field induced spin-orbit coupling were investigated theoretically. Based on a unified semiclassical theoretical approach, it is shown that the total anomalous Hall conductivity can be expressed as the sum of three distinct contributions in the presence of these competing spin-orbit interactions, namely an intrinsic contribution determined by the Berry curvature in the momentum space, an extrinsic contribution determined by the modified Bloch band group velocity and an extrinsic contribution determined by spin-orbit-dependent impurity scattering. The characteristics of these competing contributions are discussed in detail in the paper.展开更多
We investigate the prominent impacts of coupling strengths on the evolution of entanglement and quantum discord for a three-qubit system coupled to an XY spin-chain environment. In the case of a pure W state, more rob...We investigate the prominent impacts of coupling strengths on the evolution of entanglement and quantum discord for a three-qubit system coupled to an XY spin-chain environment. In the case of a pure W state, more robust, even larger nonzero quantum correlations can be obtained by tailoring the coupling strengths between the qubits and the environment. For a mixed state consisting of the GHZ and W states, the dynamics of entanglement and quantum discord can characterize the critical point of quantum phase transition. Remarkably, a large nonzero quantum discord is generally retained, while the nonzero entanglement can only be obtained as the system-environment coupling satisfies certain conditions. We also find that the impact of each qubit's coupling strength on the quantum correlation dynamics strongly depends on the variation schemes of the system-environment couplings.展开更多
This article considers One example is also given to take a the coset structure closer look at what of spin group via analyzing the expression of its representation. the coset and the subgroup are.
We study two types of bright solitons in an attractive Bose-Einstein condensate with a spin-orbit interaction. By solving the coupled nonlinear SchrOdinger equations with the variational method and the imaginary time ...We study two types of bright solitons in an attractive Bose-Einstein condensate with a spin-orbit interaction. By solving the coupled nonlinear SchrOdinger equations with the variational method and the imaginary time evolution method, fundamental properties of solitons are carefully investigated in different parameter regimes. It is shown that the detuning between the Raman beam and energy states of the atoms dominates the ground state type and spin polarization strength. The soliton dynamics is also studied for various moving velocities for zero and nonzero detuning cases. We find that the shape of individual component solitons can be maintained when the moving speed of solitons is low and the detuning is small in the coupled harmonically trapped pseudo-spin polarization Bose-Einstein condensate.展开更多
We theoretically investigate the spin-orbit interaction in GaAs/AlxGal_xAs coupled quantum wells. We consider the contribution of the interface-related Rashba term as well as the linear and cubic Dresselhaus terms to ...We theoretically investigate the spin-orbit interaction in GaAs/AlxGal_xAs coupled quantum wells. We consider the contribution of the interface-related Rashba term as well as the linear and cubic Dresselhaus terms to the spin splitting. For the coupled quantum wells which bear an inherent structure inversion asymmetry, the same probability density distribution of electrons in the two step quantum wells results in a large spin splitting from the interface term. If the widths of the two step quantum wells are different, the electron probability density in the wider step quantum well is considerably higher than that in the narrower one, resulting in the decrease of the spin splitting from the interface term. The results also show that the spin splitting of the coupled quantum well is not significantly larger than that of a step quantum well.展开更多
In this paper, we investigate the Berry phase of two coupled arbitrary spins driven by a time-varying magnetic field where the Hamiltonian is explicitly tlme-dependent. Using a technique of time-dependent gauge transf...In this paper, we investigate the Berry phase of two coupled arbitrary spins driven by a time-varying magnetic field where the Hamiltonian is explicitly tlme-dependent. Using a technique of time-dependent gauge transform the Berry phase and time-evolution operator are found explicitly in the adiabatic approximation. The general solutions for arbitrary spins are applied to the spin-1/2 system as an example of explanation.展开更多
There is a quantum spin Hall state in the inverted HgTe quantum well, characterized by the topologically protected gapless helical edge states lying within the bulk gap. It has been found that for a strip of finite wi...There is a quantum spin Hall state in the inverted HgTe quantum well, characterized by the topologically protected gapless helical edge states lying within the bulk gap. It has been found that for a strip of finite width, the edge states on the two sides can couple together to produce a gap in the spectrum. The phenomenon is called the finite size effect in quantum spin Hall systems. In this paper, we investigate the effects of the spin-orbit coupling due to bulk- and structure-inversion asymmetries on the finite size effect in the HgTe quantum well by means of the numerical diagonalization method. When the bulk-inversion asymmetry is taken into account, it is shown that the energy gap Eg of the edge states due to the finite size effect features an oscillating exponential decay as a function of the strip width of the HgTe quantum well. The origin of this oscillatory pattern on the exponential decay is explained. Furthermore, if the bulk- and structure-inversion asymmetries are considered simultaneously, the structure-inversion asymmetry will induce a shift of the energy gap Eg closing point. Finally, based on the roles of the bulk- and structure-inversion asymmetries on the finite size effects, a way to realize the quantum spin Hall field effect transistor is proposed.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11974215,21933002,and 12274264)。
文摘With an extended Su–Schrieffer–Heeger model and Green's function method, the spin–orbit coupling(SOC) effects on spin admixture of electronic states and quantum transport in organic devices are investigated. The role of lattice distortion induced by the strong electron–lattice interaction in organics is clarified in contrast with a uniform chain. The results demonstrate an enhanced SOC effect on the spin admixture of frontier eigenstates by the lattice distortion at a larger SOC,which is explained by the perturbation theory. The quantum transport under the SOC is calculated for both nonmagnetic and ferromagnetic electrodes. A more notable SOC effect on total transmission and current is observed for ferromagnetic electrodes, where spin filtering induced by spin-flipped transmission and suppression of magnetoresistance are obtained.Unlike the spin admixture, a stronger SOC effect on transmission exists for the uniform chain rather than the organic lattices with distortion. The reason is attributed to the modified spin-polarized conducting states in the electrodes by lattice configuration, and hence the spin-flip transmission, instead of the spin admixture of eigenstates. This work is helpful to understand the SOC effect in organic spin valves in the presence of lattice distortion.
基金support of Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDB0450101)the National Natural Science Foundation of China(Grant Nos.12125408 and 11974322)+1 种基金the Informatization Plan of Chinese Academy of Sciences(Grant No.CAS-WX2021SF-0105)the support of the National Natural Science Foundation of China(Grant No.12174363)。
文摘Understanding the photoexcitation induced spin dynamics in ferromagnetic metals is important for the design of photo-controlled ultrafast spintronic device.In this work,by the ab initio nonadiabatic molecular dynamics simulation,we have studied the spin dynamics induced by spin–orbit coupling(SOC)in Co and Fe using both spin-diabatic and spin-adiabatic representations.In Co system,it is found that the Fermi surface(E_(F))is predominantly contributed by the spin-minority states.The SOC induced spin flip will occur for the photo-excited spin-majority electrons as they relax to the E_(F),and the spin-minority electrons tend to relax to the EFwith the same spin through the electron–phonon coupling(EPC).The reduction of spin-majority electrons and the increase of spin-minority electrons lead to demagnetization of Co within100 fs.By contrast,in Fe system,the E_(F) is dominated by the spin-majority states.In this case,the SOC induced spin flip occurs for the photo-excited spin-minority electrons,which leads to a magnetization enhancement.If we move the E_(F) of Fe to higher energy by 0.6eV,the E_(F) will be contributed by the spin-minority states and the demagnetization will be observed again.This work provides a new perspective for understanding the SOC induced spin dynamics mechanism in magnetic metal systems.
基金Project supported by the National Key R&D Program of China(Grant No.2022YFA1403601).
文摘The spin superconductor state is the spin-polarized triplet exciton condensate,which can be viewed as a counterpart of the charge superconductor state.As an analogy of the charge Josephson effect,the spin Josephson effect can be generated in the spin superconductor/normal metal/spin superconductor junctions.Here we study the spin supercurrent in the Josephson junctions consisting of two spin superconductors with noncollinear spin polarizations.For the Josephson junctions with out-of-plane spin polarizations,the possibleπ-state spin supercurrent appears due to the Fermi momentum-splitting Andreev-like reflections at the normal metal/spin superconductor interfaces.For the Josephson junctions with in-plane spin polarizations,the anomalous spin supercurrent appears and is driven by the misorientation angle of the in-plane polarizations.The symmetry analysis shows that the appearance of the anomalous spin Josephson current is possible when the combined symmetry of the spin rotation and the time reversal is broken.
基金Project supported by the National Natural Science Foundation of China (Grant No.62071118)the Primary Research & Development Plan of Jiangsu Province (Grant No.BE2021004-3)。
文摘The nitrogen-vacancy (NV) center quantum systems have emerged as versatile tools in the field of precision measurement because of their high sensitivity in spin state detection and miniaturization potential as solid-state platforms.In this paper,an acceleration sensing scheme based on NV spin–strain coupling is proposed,which can effectively eliminate the influence of the stray noise field introduced by traditional mechanical schemes.Through the finite element simulation,it is found that the measurement bandwidth of this ensemble NV spin system ranges from 3 kHz to hundreds of kHz with structure√optimization.The required power is at the sub-μW level,corresponding to a noise-limited sensitivity of 6.7×10^(-5) /√Hz.Compared with other types of accelerometers,this micro-sized diamond sensor proposed here has low power consumption,exquisite sensitivity,and integration potential.This research opens a fresh perspective to realize an accelerometer with appealing comprehensive performance applied in biomechanics and inertial measurement fields.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 12065022 and 12147213)。
文摘The dynamics of spin–orbit-coupled Bose–Einstein condensate with parity-time symmetry through a moving obstacle potential is simulated numerically. In the miscible two-component condensate, the formation of the Kármán vortex street is observed in one component, while ‘the half-quantum vortex street' is observed in the other component. Other patterns of vortex shedding, such as oblique vortex dipoles, V-shaped vortex pairs, irregular turbulence, and combined modes of various wakes, can also be found. The ratio of inter-vortex spacing in one row to the distance between vortex rows is approximately0.18, which is less than the stability condition 0.28 of classical fluid. The drag force acting on the obstacle potential is simulated. The parametric regions of Kármán vortex street and other vortex patterns are calculated. The range of Kármán vortex street is surrounded by the region of combined modes. In addition, spin–orbit coupling disrupts the symmetry of the system and the gain-loss affects the local particle distribution of the system, which leads to the local symmetry breaking of the system, and finally influences the stability of the Kármán vortex street. Finally, we propose an experimental protocol to realize the Kármán vortex street in a system.
基金Supported by National Natural Science Foundation of China(Grant No.51375289)Shanghai Municipal Natural Science Foundation of China(Grant No.13ZR1415500)Innovation Fund of Shanghai Education Commission(Grant No.13YZ020)
文摘The body of quadruped robot is generally developed with the rigid structure. The mobility of quadruped robot depcnds on the mechanical properties of the body mechanism, It is difficult for quadruped robot with rigid structure to achieve better mobility walking or running in the unstructured environment. A kind of bionic flexible body mechanism for quadruped robot is proposed, which is composed of one bionic spine and four pneumatic artificial muscles(PAMs). This kind of body imitates the four-legged creatures' kinematical structure and physical properties, which has the characteristic of changeable stiff'hess, lightweight, flexible and better bionics. The kinematics of body bending is derived, and the coordinated movement between the flexible body and legs is analyzed. The relationship between the body bending angle and the PAM length is obtained. The dynamics of the body bending is derived by the floating coordinate method and Lagrangian method, and the driving tbrce of PAM is determined. The experiment of body bending is conductcd, and the dynamic bending characteristic of bionic flexible body is evaluated. Experimental results show that the bending angle of the bionic flexible body can reach 18. An innovation body mechanism for quadruped robot is proposed, which has the characteristic of flexibility and achieve bending by changing gas pressure of PAMs. The coordinated movement of the body and legs can achieve spinning gait in order to improve the mobility of quadruped robot.
基金Project supported by the National Key Research and Development Program of China(Grant Nos.2016YFB0501600 and 2017YFB0503100)the National Natural Science Foundation of China(Grant Nos.61773043,61673041,and 61721091)
文摘A nuclear spin gyroscope based on an alkali-metal–noble-gas co-magnetometer operated in spin-exchange relaxationfree(SERF) regime is a promising atomic rotation sensor for its ultra-high fundamental sensitivity. However, the fluctuation of probe light intensity is one of the main technical error sources that limits the bias stability of the gyroscope. Here we propose a novel method to suppress the bias error induced by probe light intensity fluctuations. This method is based on the inherent magnetic field response characteristics of the gyroscope. By the application of a bias magnetic field, the gyroscope can be tuned to a working point where the output signal is insensitive to probe light intensity variation, referred to herein as ‘zero point’, thus the bias error induced by intensity fluctuations can be completely suppressed. The superiority of the method was verified on a K–Rb–21 Ne co-magnetometer, and a bias stability of approximately 0.01°/h was obtained. In addition, the method proposed here can remove the requirement of the closed-loop control of probe light intensity, thereby facilitating miniaturization of the gyroscope volume and improvement of reliability.
基金Project supported by the National Natural Science Foundation of China (Grant No. 10874021)
文摘The magnetic and electronic properties of the geometrically frustrated triangular antiferromagnet CuCrO2 are investigated by first principles through density functional theory calculations within the generalized gradient approxi- mations (GGA)+U scheme. The spin exchange interactions up to the third nearest neighbours in the ab plane as well as the coupling between adjacent layers are calculated to examine the magnetism and spin frustration. It is found that CuCrO2 has a natural two-dimensional characteristic of the magnetic interaction. Using Monte Carlo simulation, we obtain the Neel temperature to be 29.9 K, which accords well with the experimental value of 24 K. Based on non- collinear magnetic structure calculations, we verify that the incommensurate spiral-spin structure with (110) spiral plane is believable for the magnetic ground state, which is consistent with the experimental observations. Due to intra-layer geometric spin frustration, parallel helical-spin chains arise along the a, b, or a+ b directions, each with a screw-rotation angle of about I20°. Our calculations of the density of states show that the spin frustration plays an important role in the change of d-p hybridization, while the spin-orbit coupling has a very limited influence on the electronic structure.
基金supported by the Chinese Academy of Sciences under Grant No.KZCX2-YW-219State Key Project for Basic Research Program of China(973)under Grant No.2010CB951801Key Program of National Natural Science Foundation under Grant No.40830103
文摘A dynamic global vegetation model (DGVM) coupled with a land surface model (LSM) is generally initialized using a spin-up process to derive a physically-consistent initial condition. Spin-up forcing, which is the atmospheric forcing used to drive the coupled model to equilibrium solutions in the spin-up process, varies across earlier studies. In the present study, the impact of the spin-up forcing in the initialization stage on the fractional coverages (FCs) of plant functional type (PFT) in the subsequent simulation stage are assessed in seven classic climate regions by a modified Community Land Model’s Dynamic Global Vegetation Model (CLM-DGVM). Results show that the impact of spin-up forcing is considerable in all regions except the tropical rainforest climate region (TR) and the wet temperate climate region (WM). In the tropical monsoon climate region (TM), the TR and TM transition region (TR-TM), the dry temperate climate region (DM), the highland climate region (H), and the boreal forest climate region (BF), where FCs are affected by climate non-negligibly, the discrepancies in initial FCs, which represent long-term cumulative response of vegetation to different climate anomalies, are large. Moreover, the large discrepancies in initial FCs usually decay slowly because there are trees or shrubs in the five regions. The intrinsic growth timescales of FCs for tree PFTs and shrub PFTs are long, and the variation of FCs of tree PFTs or shrub PFTs can affect that of grass PFTs.
基金Project supported by the Chinese Ministry of Science and Technology(Grant No.2016YFA0300402)the National Natural Science Foundation of China(Grant No.11574265)+1 种基金the Natural Science Foundation of Zhejiang Province,China(Grant Nos.LR15A040001 and LY14A040007)the Fundamental Research Funds for the Central Universities,China
文摘Diluted ferromagnetic semiconductors(DMSs) that combine the properties of semiconductors with ferromagnetism have potential application in spin-sensitive electronic(spintronic) devices. The search for DMS materials exploded after the observation of ferromagnetic ordering in Ⅲ-Ⅴ(Ga,Mn)As films. Recently, a series of DMS compounds isostructural to iron-based superconductors have been reported. Among them, the highest Curie temperature TCo f 230 K has been achieved in(Ba,K)(Zn,Mn)2As2. However, most DMSs, including(Ga,Mn)As, are p-type, i.e., the carriers that mediate the ferromagnetism are holes. For practical applications, DMSs with n-type carriers are also advantageous. Very recently,a new DMS Ba(Zn,Co)2As2 with n-type carriers has been synthesized. Here we summarize the recent progress on this research stream. We will show that the homogeneous ferromagnetism in these bulk form DMSs has been confirmed by microscopic techniques, i.e., nuclear magnetic resonance(NMR) and muon spin rotation(μSR).
文摘Studies have shown that micro-wedge vortex generators(MVG)can effectively control the flow separation of supersonic boundary layer.In order to improve the flight stability of spinning projectile,the original standard 155 mm projectile was taken as an example,and the micro-vanes were mounted at the projectile shoulder to investigate the separation control on the aerodynamic characteristics of projectile.Numerical simulations were performed with the use of DES method for the flow fields of projectiles with and without micro-vanes,and the characteristics of the boundary layer structures and aerodynamic data were compared and discussed.Numerical results show that the micro-vanes can be used to inhibit separation of fluid on projectile surface,and improve the flight stability and firing dispersion of projectile.
基金Supported by the National Natural Science Foundation of China(No.51375289)Shanghai Municipal National Natural Science Foundation of China(No.13ZR1415500)Innovation Fund of Shanghai Education Commission(No.13YZ020)
文摘The walking creatures' athletic ability is related to their body' s musculoskeletal system.A kind of musculoskeletal body for quadruped robots is developed,which will be used to assist the leg mechanism to achieve spinning gait in order to improve the robot mobility in unstructured environment.A bionic-flexible-spine model driven by pneumatic artificial muscles(PAMs) is proposed.Because the body has the flexible property,the robot can achieve spinning gait quickly,which is similar to walking creatures by coordinated movement between body bending and legs side-swing.The kinematics of the bending of the musculoskeletal body and side-swing of leg mechanism of quadruped robot for spinning gait are studied.According to the stability analysis of spinning gait,the relationship between body bending angle and leg swing angle can be determined.The PID controller is designed to conduct the bending experiment,and the bending characteristic of the musculoskeletal body is studied.Experimental results show that the biggest bending angle of the musculoskeletal body can reach 30°.
文摘Using the perturbation method, we theoretically study the spin current and its heat effect in a multichannel quantum wire with Rashba spin-orbit coupling. The heat generated by the spin current is calculated. With the increase of the width of the quantum wire, the spin current and the heat generated both exhibit period oscillations with equal amplitudes. When the quantum-channel number is doubled, the oscillation periods of the spin current and of the heat generated both decrease by a factor of 2. For the spin current js,xy, the amplitude increases with the decrease of the quantum channel; while the amplitude of the spin current js,yx remains the same. Therefore we conclude that the effect of the quantum-channel number on the spin current js,xy is greater than that on the spin current js,yx. The strength of the Rashba spin-orbit coupling is tunable by the gate voltage, and the gate voltage can be varied experimentally, which implies a new method of detecting the. spin current. In addition, we can control the amplitude and the oscillation period of the spin current by controlling the number of the quantum channels. All these characteristics of the spin current will be very important for detecting and controlling the spin current, and especially for designing new spintronic devices in the future.
基金supported by the National Natural Science Foundation of China (Grant No.10874049)
文摘The various competing contributions to the anomalous Hall effect in spin-polarized two-dimensional electron gases in the presence of both intrinsic, extrinsic and external electric-field induced spin-orbit coupling were investigated theoretically. Based on a unified semiclassical theoretical approach, it is shown that the total anomalous Hall conductivity can be expressed as the sum of three distinct contributions in the presence of these competing spin-orbit interactions, namely an intrinsic contribution determined by the Berry curvature in the momentum space, an extrinsic contribution determined by the modified Bloch band group velocity and an extrinsic contribution determined by spin-orbit-dependent impurity scattering. The characteristics of these competing contributions are discussed in detail in the paper.
基金supported by National Basic Research Program of China(Grant No.2013CBA01702)National Natural Science Foundation of China(Grant Nos.61377016,61575055,10974039,61307072,61308017,and 61405056)
文摘We investigate the prominent impacts of coupling strengths on the evolution of entanglement and quantum discord for a three-qubit system coupled to an XY spin-chain environment. In the case of a pure W state, more robust, even larger nonzero quantum correlations can be obtained by tailoring the coupling strengths between the qubits and the environment. For a mixed state consisting of the GHZ and W states, the dynamics of entanglement and quantum discord can characterize the critical point of quantum phase transition. Remarkably, a large nonzero quantum discord is generally retained, while the nonzero entanglement can only be obtained as the system-environment coupling satisfies certain conditions. We also find that the impact of each qubit's coupling strength on the quantum correlation dynamics strongly depends on the variation schemes of the system-environment couplings.
基金The project supported by National Key Basic Research Project of China under Grant No. 2004CB318000 and National Natural Science Foundation of China under Grant Nos. 10375038 and 90403018. The authors would like to express their thanks to Moningside Center, The Chinese Academy of Sciences. Part of the work was done when we were joining the Workshop on Mathematical Physics there.Acknowledgments We are deeply grateful to Profs. Qi-Keng Lu, Han-Ying Guo, and Shi-Kun Wang for their valuable discussions, which essentially stimulate us to write down this work.
文摘This article considers One example is also given to take a the coset structure closer look at what of spin group via analyzing the expression of its representation. the coset and the subgroup are.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11304270 and 11475144)
文摘We study two types of bright solitons in an attractive Bose-Einstein condensate with a spin-orbit interaction. By solving the coupled nonlinear SchrOdinger equations with the variational method and the imaginary time evolution method, fundamental properties of solitons are carefully investigated in different parameter regimes. It is shown that the detuning between the Raman beam and energy states of the atoms dominates the ground state type and spin polarization strength. The soliton dynamics is also studied for various moving velocities for zero and nonzero detuning cases. We find that the shape of individual component solitons can be maintained when the moving speed of solitons is low and the detuning is small in the coupled harmonically trapped pseudo-spin polarization Bose-Einstein condensate.
基金Project supported by the National Natural Science Foundation of China (Grant No. 61204107)the Scientific Research Fund of Zhejiang Provincial Education Department, China (Grant No. Y201120799)
文摘We theoretically investigate the spin-orbit interaction in GaAs/AlxGal_xAs coupled quantum wells. We consider the contribution of the interface-related Rashba term as well as the linear and cubic Dresselhaus terms to the spin splitting. For the coupled quantum wells which bear an inherent structure inversion asymmetry, the same probability density distribution of electrons in the two step quantum wells results in a large spin splitting from the interface term. If the widths of the two step quantum wells are different, the electron probability density in the wider step quantum well is considerably higher than that in the narrower one, resulting in the decrease of the spin splitting from the interface term. The results also show that the spin splitting of the coupled quantum well is not significantly larger than that of a step quantum well.
基金Project supported by the National Natural Science Foundation of China (Grant No 10475053)
文摘In this paper, we investigate the Berry phase of two coupled arbitrary spins driven by a time-varying magnetic field where the Hamiltonian is explicitly tlme-dependent. Using a technique of time-dependent gauge transform the Berry phase and time-evolution operator are found explicitly in the adiabatic approximation. The general solutions for arbitrary spins are applied to the spin-1/2 system as an example of explanation.
基金Project supported by the National Natural Science Foundation of China(Grant No.11274102)the Program for New Century Excellent Talents in Universities,China(Grant No.NCET-11-0960)the Specialized Research Fund for the Doctoral Program of Higher Education of China(Grant No.20134208110001)
文摘There is a quantum spin Hall state in the inverted HgTe quantum well, characterized by the topologically protected gapless helical edge states lying within the bulk gap. It has been found that for a strip of finite width, the edge states on the two sides can couple together to produce a gap in the spectrum. The phenomenon is called the finite size effect in quantum spin Hall systems. In this paper, we investigate the effects of the spin-orbit coupling due to bulk- and structure-inversion asymmetries on the finite size effect in the HgTe quantum well by means of the numerical diagonalization method. When the bulk-inversion asymmetry is taken into account, it is shown that the energy gap Eg of the edge states due to the finite size effect features an oscillating exponential decay as a function of the strip width of the HgTe quantum well. The origin of this oscillatory pattern on the exponential decay is explained. Furthermore, if the bulk- and structure-inversion asymmetries are considered simultaneously, the structure-inversion asymmetry will induce a shift of the energy gap Eg closing point. Finally, based on the roles of the bulk- and structure-inversion asymmetries on the finite size effects, a way to realize the quantum spin Hall field effect transistor is proposed.