The heterogeneous variational nodal method(HVNM)has emerged as a potential approach for solving high-fidelity neutron transport problems.However,achieving accurate results with HVNM in large-scale problems using high-...The heterogeneous variational nodal method(HVNM)has emerged as a potential approach for solving high-fidelity neutron transport problems.However,achieving accurate results with HVNM in large-scale problems using high-fidelity models has been challenging due to the prohibitive computational costs.This paper presents an efficient parallel algorithm tailored for HVNM based on the Message Passing Interface standard.The algorithm evenly distributes the response matrix sets among processors during the matrix formation process,thus enabling independent construction without communication.Once the formation tasks are completed,a collective operation merges and shares the matrix sets among the processors.For the solution process,the problem domain is decomposed into subdomains assigned to specific processors,and the red-black Gauss-Seidel iteration is employed within each subdomain to solve the response matrix equation.Point-to-point communication is conducted between adjacent subdomains to exchange data along the boundaries.The accuracy and efficiency of the parallel algorithm are verified using the KAIST and JRR-3 test cases.Numerical results obtained with multiple processors agree well with those obtained from Monte Carlo calculations.The parallelization of HVNM results in eigenvalue errors of 31 pcm/-90 pcm and fission rate RMS errors of 1.22%/0.66%,respectively,for the 3D KAIST problem and the 3D JRR-3 problem.In addition,the parallel algorithm significantly reduces computation time,with an efficiency of 68.51% using 36 processors in the KAIST problem and 77.14% using 144 processors in the JRR-3 problem.展开更多
Multiplicative noise removal problems have attracted much attention in recent years.Unlike additive noise,multiplicative noise destroys almost all information of the original image,especially for texture images.Motiva...Multiplicative noise removal problems have attracted much attention in recent years.Unlike additive noise,multiplicative noise destroys almost all information of the original image,especially for texture images.Motivated by the TV-Stokes model,we propose a new two-step variational model to denoise the texture images corrupted by multiplicative noise with a good geometry explanation in this paper.In the first step,we convert the multiplicative denoising problem into an additive one by the logarithm transform and propagate the isophote directions in the tangential field smoothing.Once the isophote directions are constructed,an image is restored to fit the constructed directions in the second step.The existence and uniqueness of the solution to the variational problems are proved.In these two steps,we use the gradient descent method and construct finite difference schemes to solve the problems.Especially,the augmented Lagrangian method and the fast Fourier transform are adopted to accelerate the calculation.Experimental results show that the proposed model can remove the multiplicative noise efficiently and protect the texture well.展开更多
The precision and reliability of first-arrival picking are crucial for determining the accuracy of geological structure inversion using active source ocean bottom seismometer(OBS)refraction data.Traditional methods fo...The precision and reliability of first-arrival picking are crucial for determining the accuracy of geological structure inversion using active source ocean bottom seismometer(OBS)refraction data.Traditional methods for first-arrival picking based on sample points are characterized by theoretical errors,especially in low-sampling-frequency OBS data because the travel time of seismic waves is not an integer multiple of the sampling interval.In this paper,a first-arrival picking method that utilizes the spatial waveform variation characteristics of active source OBS data is presented.First,the distribution law of theoretical error is examined;adjacent traces exhibit variation characteristics in their waveforms.Second,a label cross-correlation superposition method for extracting highfrequency signals is presented to enhance the first-arrival picking precision.Results from synthetic and field data verify that the proposed approach is robust,successfully overcomes the limitations of low sampling frequency,and achieves precise outcomes that are comparable with those of high-sampling-frequency data.展开更多
In this paper,we investigate pseudomonotone and Lipschitz continuous variational inequalities in real Hilbert spaces.For solving this problem,we propose a new method that combines the advantages of the subgradient ext...In this paper,we investigate pseudomonotone and Lipschitz continuous variational inequalities in real Hilbert spaces.For solving this problem,we propose a new method that combines the advantages of the subgradient extragradient method and the projection contraction method.Some very recent papers have considered different inertial algorithms which allowed the inertial factor is chosen in[0;1].The purpose of this work is to continue working in this direction,we propose another inertial subgradient extragradient method that the inertial factor can be chosen in a special case to be 1.Under suitable mild conditions,we establish the weak convergence of the proposed algorithm.Moreover,linear convergence is obtained under strong pseudomonotonicity and Lipschitz continuity assumptions.Finally,some numerical illustrations are given to confirm the theoretical analysis.展开更多
Many solutions of variational inequalities have been proposed,among which the subgradient extragradient method has obvious advantages.Two different algorithms are given for solving variational inequality problem in th...Many solutions of variational inequalities have been proposed,among which the subgradient extragradient method has obvious advantages.Two different algorithms are given for solving variational inequality problem in this paper.The problem we study is defined in a real Hilbert space and has L-Lipschitz and pseudomonotone condition.Two new algorithms adopt inertial technology and non-monotonic step size rule,and their convergence can still be proved when the value of L is not given in advance.Finally,some numerical results are designed to demonstrate the computational efficiency of our two new algorithms.展开更多
The Time Fractional Burger equation was solved in this study using the Mabel software and the Variational Iteration approach. where a number of instances of the Time Fractional Burger Equation were handled using this ...The Time Fractional Burger equation was solved in this study using the Mabel software and the Variational Iteration approach. where a number of instances of the Time Fractional Burger Equation were handled using this technique. Tables and images were used to present the collected numerical results. The difference between the exact and numerical solutions demonstrates the effectiveness of the Mabel program’s solution, as well as the accuracy and closeness of the results this method produced. It also demonstrates the Mabel program’s ability to quickly and effectively produce the numerical solution.展开更多
By introducing the dimensional splitting(DS)method into the multiscale interpolating element-free Galerkin(VMIEFG)method,a dimension-splitting multiscale interpolating element-free Galerkin(DS-VMIEFG)method is propose...By introducing the dimensional splitting(DS)method into the multiscale interpolating element-free Galerkin(VMIEFG)method,a dimension-splitting multiscale interpolating element-free Galerkin(DS-VMIEFG)method is proposed for three-dimensional(3D)singular perturbed convection-diffusion(SPCD)problems.In the DSVMIEFG method,the 3D problem is decomposed into a series of 2D problems by the DS method,and the discrete equations on the 2D splitting surface are obtained by the VMIEFG method.The improved interpolation-type moving least squares(IIMLS)method is used to construct shape functions in the weak form and to combine 2D discrete equations into a global system of discrete equations for the three-dimensional SPCD problems.The solved numerical example verifies the effectiveness of the method in this paper for the 3D SPCD problems.The numerical solution will gradually converge to the analytical solution with the increase in the number of nodes.For extremely small singular diffusion coefficients,the numerical solution will avoid numerical oscillation and has high computational stability.展开更多
In this paper, we study the regularization methods to approximate the solutions of the variational inequalities with monotone hemi-continuous operator having perturbed operators arbitrary. Detail, we shall study regul...In this paper, we study the regularization methods to approximate the solutions of the variational inequalities with monotone hemi-continuous operator having perturbed operators arbitrary. Detail, we shall study regularization methods to approximate solutions of following variational inequalities: and with operator A being monotone hemi-continuous form real Banach reflexive X into its dual space X*, but instead of knowing the exact data (y<sub>0</sub>, A), we only know its approximate data satisfying certain specified conditions and D is a nonempty convex closed subset of X;the real function f defined on X is assumed to be lower semi-continuous, convex and is not identical to infinity. At the same time, we will evaluate the convergence rate of the approximate solution. The regularization methods here are different from the previous ones.展开更多
A LES model is proposed to predict the dispersion of particles in the atmosphere in the context of Chemical,Biological,Radiological and Nuclear(CBRN)applications.The code relies on the Finite Element Method(FEM)for bo...A LES model is proposed to predict the dispersion of particles in the atmosphere in the context of Chemical,Biological,Radiological and Nuclear(CBRN)applications.The code relies on the Finite Element Method(FEM)for both the fluid and the dispersed solid phases.Starting from the Navier-Stokes equations and a general description of the FEM strategy,the Streamline Upwind Petrov-Galerkin(SUPG)method is formulated putting some emphasis on the related assembly matrix and stabilization coefficients.Then,the Variational Multiscale Method(VMS)is presented together with a detailed illustration of its algorithm and hierarchy of computational steps.It is demonstrated that the VMS can be considered as a more general version of the SUPG method.The final part of the work is used to assess the reliability of the implemented predictor/multicorrector solution strategy.展开更多
A class of coupled system for the E1 Nifio-Southern Oscillation (ENSO) mechanism is studied. Using the method of variational iteration for perturbation theory, the asymptotic expansions of the solution for ENSO mode...A class of coupled system for the E1 Nifio-Southern Oscillation (ENSO) mechanism is studied. Using the method of variational iteration for perturbation theory, the asymptotic expansions of the solution for ENSO model are obtained and the asymptotic behaviour of solution for corresponding problem is considered.展开更多
A class of E1 Niйo atmospheric physics oscillation model is considered. The E1 Niйo atmospheric physics oscillation is an abnormal phenomenon involved in the tropical Pacific ocean-atmosphere interactions. The conce...A class of E1 Niйo atmospheric physics oscillation model is considered. The E1 Niйo atmospheric physics oscillation is an abnormal phenomenon involved in the tropical Pacific ocean-atmosphere interactions. The conceptual oscillator model should consider the variations of both the eastern and western Pacific anomaly patterns. An E1 Niйo atmospheric physics model is proposed using a method for the variational iteration theory. Using the variational iteration method, the approximate expansions of the solution of corresponding problem are constructed. That is, firstly, introducing a set of functional and accounting their variationals, the Lagrange multiplicators are counted, and then the variational iteration is defined, finally, the approximate solution is obtained. From approximate expansions of the solution, the zonal sea surface temperature anomaly in the equatorial eastern Pacific and the thermocline depth anomaly of the sea-air oscillation for E1 Niйo atmospheric physics model can be analyzed. E1 Niйo is a very complicated natural phenomenon. Hence basic models need to be reduced for the sea-air oscillator and are solved. The variational iteration is a simple and valid approximate method.展开更多
The simplified linear model of Grad-Shafranov (GS) reconstruction can be reformulated into an inverse boundary value problem of Laplace's equation. Therefore, in this paper we focus on the method of solving the inv...The simplified linear model of Grad-Shafranov (GS) reconstruction can be reformulated into an inverse boundary value problem of Laplace's equation. Therefore, in this paper we focus on the method of solving the inverse boundary value problem of Laplace's equation. In the first place, the variational regularization method is used to deal with the ill- posedness of the Cauchy problem for Laplace's equation. Then, the 'L-Curve' principle is suggested to be adopted in choosing the optimal regularization parameter. Finally, a numerical experiment is implemented with a section of Neumann and Dirichlet boundary conditions with observation errors. The results well converge to the exact solution of the problem, which proves the efficiency and robustness of the proposed method. When the order of observation error δ is 10-1, the order of the approximate result error can reach 10-3.展开更多
In this article, we introduce a hybrid iterative scheme for finding a common element of the set of solutions for a generalized equilibrium problems, the set of common fixed point for a family of infinite k-strict pseu...In this article, we introduce a hybrid iterative scheme for finding a common element of the set of solutions for a generalized equilibrium problems, the set of common fixed point for a family of infinite k-strict pseudo-contractive mappings, and the set of solutions of the variational inclusion problem with multi-valued maximal monotone mappings and inverse-strongly monotone mappings in Hilbert space. Under suitable conditions, some strong convergence theorems are proved. Our results extends the recent results in G.L.Acedo and H.K.Xu [2], Zhang, Lee and Chan [8], Wakahashi and Toyoda [9], Takahashi and Takahashi [I0] and S. S. Chang, H. W. Joseph Lee and C. K. Chan [II], S.Takahashi and W.Takahashi [12]. Moreover, the method of proof adopted in this article is different from those of [4] and [12].展开更多
Semi-inverse method, which is an integration and an extension of Hu's try-and-error method, Chien's veighted residual method and Liu's systematic method, is proposed to establish generalized variational pr...Semi-inverse method, which is an integration and an extension of Hu's try-and-error method, Chien's veighted residual method and Liu's systematic method, is proposed to establish generalized variational principles with multi-variables without arty variational crisis phenomenon. The method is to construct an energy trial-functional with an unknown function F, which can be readily identified by making the trial-functional stationary and using known constraint equations. As a result generalized variational principles with two kinds of independent variables (such as well-known Hellinger-Reissner variational principle and Hu-Washizu principle) and generalized variational principles with three kinds of independent variables (such as Chien's generalized variational principles) in elasticity have been deduced without using Lagrange multiplier method. By semi-inverse method, the author has also proved that Hu-Washizu principle is actually a variational principle with only two kinds of independent variables, stress-strain relations are still its constraints.展开更多
As a calculation method based on the Galerkin variation,the numerical manifold method(NMM)adopts a double covering system,which can easily deal with discontinuous deformation problems and has a high calculation accura...As a calculation method based on the Galerkin variation,the numerical manifold method(NMM)adopts a double covering system,which can easily deal with discontinuous deformation problems and has a high calculation accuracy.Aiming at the thermo-mechanical(TM)coupling problem of fractured rock masses,this study uses the NMM to simulate the processes of crack initiation and propagation in a rock mass under the influence of temperature field,deduces related system equations,and proposes a penalty function method to deal with boundary conditions.Numerical examples are employed to confirm the effectiveness and high accuracy of this method.By the thermal stress analysis of a thick-walled cylinder(TWC),the simulation of cracking in the TWC under heating and cooling conditions,and the simulation of thermal cracking of the SwedishÄspöPillar Stability Experiment(APSE)rock column,the thermal stress,and TM coupling are obtained.The numerical simulation results are in good agreement with the test data and other numerical results,thus verifying the effectiveness of the NMM in dealing with thermal stress and crack propagation problems of fractured rock masses.展开更多
The Lagrange multiplier method plays an important role in establishing generalized variational principles notonly in tluid mechallics. but also in elasticity. Sometimes, however, one may come across variational crisi...The Lagrange multiplier method plays an important role in establishing generalized variational principles notonly in tluid mechallics. but also in elasticity. Sometimes, however, one may come across variational crisis(somemultipliers vanish identically). failing to achieve his aim. The crisis is caused by the fact that the Inultipliers are treatedas independent variables in the process of variatioll. but after identification they become functions of the originalindependent variables. To overcome it, a Inodified Lagrange multiplier method or semi-inverse method has beenproposed to deduce generalized varistional principles. Some e-camples are given to illustrate its convenience andeffectiveness of the novel method.展开更多
Based on the nonlinear characiers of the discrete problems of some ellipticalvariational inequalities, this paper presents a numerical iterative method, the schemesof which are pithy and converge rapidly The new metho...Based on the nonlinear characiers of the discrete problems of some ellipticalvariational inequalities, this paper presents a numerical iterative method, the schemesof which are pithy and converge rapidly The new method possesses a high efficiency. insolving such applied engineering problems as obstacle problems and .free boundary.problems arising in fluid lubrications.展开更多
One of the advantages of the variational iteration method is the free choice of initial guess. In this paper we use the basic idea of the Jacobian-function method to construct a generalized trial function with some un...One of the advantages of the variational iteration method is the free choice of initial guess. In this paper we use the basic idea of the Jacobian-function method to construct a generalized trial function with some unknown parameters. The Jaulent-Miodek equations are used to illustrate effectiveness and convenience of this method, some new explicit exact travelling wave solutions have been obtained, which include bell-type soliton solution, kink-type soliton solutions, solitary wave solutions, and doubly periodic wave solutions.展开更多
The generalized variational data assimilation for non-differential dynamical systems is studied.There is no tangent linear model for non-differential systems and thus the general adjoint model can not be derived in th...The generalized variational data assimilation for non-differential dynamical systems is studied.There is no tangent linear model for non-differential systems and thus the general adjoint model can not be derived in the traditional way.The weak form of the original system was introduced, and then the generalized adjoint model was derived. The generalized variational data assimilation methods were developed for non-differential low dimensional system and non-differential high dimensional system with global and local observations. Furthermore, ideas in inverse problems are introduced to 4DVAR (Four-dimensional variational) of non-differential partial differential system with local observations.展开更多
In order to solve variational inequality problems of pseudomonotonicity and Lipschitz continuity in Hilbert spaces, an inertial subgradient extragradient algorithm is proposed by virtue of non-monotone stepsizes. More...In order to solve variational inequality problems of pseudomonotonicity and Lipschitz continuity in Hilbert spaces, an inertial subgradient extragradient algorithm is proposed by virtue of non-monotone stepsizes. Moreover, weak convergence and R-linear convergence analyses of the algorithm are constructed under appropriate assumptions. Finally, the efficiency of the proposed algorithm is demonstrated through numerical implementations.展开更多
基金supported by the National Key Research and Development Program of China(No.2020YFB1901900)the National Natural Science Foundation of China(Nos.U20B2011,12175138)the Shanghai Rising-Star Program。
文摘The heterogeneous variational nodal method(HVNM)has emerged as a potential approach for solving high-fidelity neutron transport problems.However,achieving accurate results with HVNM in large-scale problems using high-fidelity models has been challenging due to the prohibitive computational costs.This paper presents an efficient parallel algorithm tailored for HVNM based on the Message Passing Interface standard.The algorithm evenly distributes the response matrix sets among processors during the matrix formation process,thus enabling independent construction without communication.Once the formation tasks are completed,a collective operation merges and shares the matrix sets among the processors.For the solution process,the problem domain is decomposed into subdomains assigned to specific processors,and the red-black Gauss-Seidel iteration is employed within each subdomain to solve the response matrix equation.Point-to-point communication is conducted between adjacent subdomains to exchange data along the boundaries.The accuracy and efficiency of the parallel algorithm are verified using the KAIST and JRR-3 test cases.Numerical results obtained with multiple processors agree well with those obtained from Monte Carlo calculations.The parallelization of HVNM results in eigenvalue errors of 31 pcm/-90 pcm and fission rate RMS errors of 1.22%/0.66%,respectively,for the 3D KAIST problem and the 3D JRR-3 problem.In addition,the parallel algorithm significantly reduces computation time,with an efficiency of 68.51% using 36 processors in the KAIST problem and 77.14% using 144 processors in the JRR-3 problem.
文摘Multiplicative noise removal problems have attracted much attention in recent years.Unlike additive noise,multiplicative noise destroys almost all information of the original image,especially for texture images.Motivated by the TV-Stokes model,we propose a new two-step variational model to denoise the texture images corrupted by multiplicative noise with a good geometry explanation in this paper.In the first step,we convert the multiplicative denoising problem into an additive one by the logarithm transform and propagate the isophote directions in the tangential field smoothing.Once the isophote directions are constructed,an image is restored to fit the constructed directions in the second step.The existence and uniqueness of the solution to the variational problems are proved.In these two steps,we use the gradient descent method and construct finite difference schemes to solve the problems.Especially,the augmented Lagrangian method and the fast Fourier transform are adopted to accelerate the calculation.Experimental results show that the proposed model can remove the multiplicative noise efficiently and protect the texture well.
基金supported by the Major Research Plan on West-Pacific Earth System Multispheric Interactions (Nos.91858215,91958206)the National Natural Science Foundation of China (NSFC)Shiptime Sharing Project (No.41949581)the Key Research and Development Program of Shandong Province (No.2019GHY112019)。
文摘The precision and reliability of first-arrival picking are crucial for determining the accuracy of geological structure inversion using active source ocean bottom seismometer(OBS)refraction data.Traditional methods for first-arrival picking based on sample points are characterized by theoretical errors,especially in low-sampling-frequency OBS data because the travel time of seismic waves is not an integer multiple of the sampling interval.In this paper,a first-arrival picking method that utilizes the spatial waveform variation characteristics of active source OBS data is presented.First,the distribution law of theoretical error is examined;adjacent traces exhibit variation characteristics in their waveforms.Second,a label cross-correlation superposition method for extracting highfrequency signals is presented to enhance the first-arrival picking precision.Results from synthetic and field data verify that the proposed approach is robust,successfully overcomes the limitations of low sampling frequency,and achieves precise outcomes that are comparable with those of high-sampling-frequency data.
基金funded by the University of Science,Vietnam National University,Hanoi under project number TN.21.01。
文摘In this paper,we investigate pseudomonotone and Lipschitz continuous variational inequalities in real Hilbert spaces.For solving this problem,we propose a new method that combines the advantages of the subgradient extragradient method and the projection contraction method.Some very recent papers have considered different inertial algorithms which allowed the inertial factor is chosen in[0;1].The purpose of this work is to continue working in this direction,we propose another inertial subgradient extragradient method that the inertial factor can be chosen in a special case to be 1.Under suitable mild conditions,we establish the weak convergence of the proposed algorithm.Moreover,linear convergence is obtained under strong pseudomonotonicity and Lipschitz continuity assumptions.Finally,some numerical illustrations are given to confirm the theoretical analysis.
文摘Many solutions of variational inequalities have been proposed,among which the subgradient extragradient method has obvious advantages.Two different algorithms are given for solving variational inequality problem in this paper.The problem we study is defined in a real Hilbert space and has L-Lipschitz and pseudomonotone condition.Two new algorithms adopt inertial technology and non-monotonic step size rule,and their convergence can still be proved when the value of L is not given in advance.Finally,some numerical results are designed to demonstrate the computational efficiency of our two new algorithms.
文摘The Time Fractional Burger equation was solved in this study using the Mabel software and the Variational Iteration approach. where a number of instances of the Time Fractional Burger Equation were handled using this technique. Tables and images were used to present the collected numerical results. The difference between the exact and numerical solutions demonstrates the effectiveness of the Mabel program’s solution, as well as the accuracy and closeness of the results this method produced. It also demonstrates the Mabel program’s ability to quickly and effectively produce the numerical solution.
基金supported by the Natural Science Foundation of Zhejiang Province,China(Grant Nos.LY20A010021,LY19A010002,LY20G030025)the Natural Science Founda-tion of Ningbo City,China(Grant Nos.2021J147,2021J235).
文摘By introducing the dimensional splitting(DS)method into the multiscale interpolating element-free Galerkin(VMIEFG)method,a dimension-splitting multiscale interpolating element-free Galerkin(DS-VMIEFG)method is proposed for three-dimensional(3D)singular perturbed convection-diffusion(SPCD)problems.In the DSVMIEFG method,the 3D problem is decomposed into a series of 2D problems by the DS method,and the discrete equations on the 2D splitting surface are obtained by the VMIEFG method.The improved interpolation-type moving least squares(IIMLS)method is used to construct shape functions in the weak form and to combine 2D discrete equations into a global system of discrete equations for the three-dimensional SPCD problems.The solved numerical example verifies the effectiveness of the method in this paper for the 3D SPCD problems.The numerical solution will gradually converge to the analytical solution with the increase in the number of nodes.For extremely small singular diffusion coefficients,the numerical solution will avoid numerical oscillation and has high computational stability.
文摘In this paper, we study the regularization methods to approximate the solutions of the variational inequalities with monotone hemi-continuous operator having perturbed operators arbitrary. Detail, we shall study regularization methods to approximate solutions of following variational inequalities: and with operator A being monotone hemi-continuous form real Banach reflexive X into its dual space X*, but instead of knowing the exact data (y<sub>0</sub>, A), we only know its approximate data satisfying certain specified conditions and D is a nonempty convex closed subset of X;the real function f defined on X is assumed to be lower semi-continuous, convex and is not identical to infinity. At the same time, we will evaluate the convergence rate of the approximate solution. The regularization methods here are different from the previous ones.
基金The authors received the funding of the Royal Higher Institute for Defence(MSP16-06).
文摘A LES model is proposed to predict the dispersion of particles in the atmosphere in the context of Chemical,Biological,Radiological and Nuclear(CBRN)applications.The code relies on the Finite Element Method(FEM)for both the fluid and the dispersed solid phases.Starting from the Navier-Stokes equations and a general description of the FEM strategy,the Streamline Upwind Petrov-Galerkin(SUPG)method is formulated putting some emphasis on the related assembly matrix and stabilization coefficients.Then,the Variational Multiscale Method(VMS)is presented together with a detailed illustration of its algorithm and hierarchy of computational steps.It is demonstrated that the VMS can be considered as a more general version of the SUPG method.The final part of the work is used to assess the reliability of the implemented predictor/multicorrector solution strategy.
基金Project supported by the National Natural Science Foundation of China (Grant Nos 90111011 and 10471039), the National Key Basic Research Special Foundation of China (Grant Nos 2003CB415101-03 and 2004CB418304), the Key Basic Research Foundation of the Chinese Academy of Sciences (Grant No KZCX3-SW-221) and in part by E-Institutes of Shanghai Municipal Education Commission (Grant No N.E03004).
文摘A class of coupled system for the E1 Nifio-Southern Oscillation (ENSO) mechanism is studied. Using the method of variational iteration for perturbation theory, the asymptotic expansions of the solution for ENSO model are obtained and the asymptotic behaviour of solution for corresponding problem is considered.
文摘A class of E1 Niйo atmospheric physics oscillation model is considered. The E1 Niйo atmospheric physics oscillation is an abnormal phenomenon involved in the tropical Pacific ocean-atmosphere interactions. The conceptual oscillator model should consider the variations of both the eastern and western Pacific anomaly patterns. An E1 Niйo atmospheric physics model is proposed using a method for the variational iteration theory. Using the variational iteration method, the approximate expansions of the solution of corresponding problem are constructed. That is, firstly, introducing a set of functional and accounting their variationals, the Lagrange multiplicators are counted, and then the variational iteration is defined, finally, the approximate solution is obtained. From approximate expansions of the solution, the zonal sea surface temperature anomaly in the equatorial eastern Pacific and the thermocline depth anomaly of the sea-air oscillation for E1 Niйo atmospheric physics model can be analyzed. E1 Niйo is a very complicated natural phenomenon. Hence basic models need to be reduced for the sea-air oscillator and are solved. The variational iteration is a simple and valid approximate method.
基金Project supported by the National Natural Science Foundation of China(Grant No.41175025)
文摘The simplified linear model of Grad-Shafranov (GS) reconstruction can be reformulated into an inverse boundary value problem of Laplace's equation. Therefore, in this paper we focus on the method of solving the inverse boundary value problem of Laplace's equation. In the first place, the variational regularization method is used to deal with the ill- posedness of the Cauchy problem for Laplace's equation. Then, the 'L-Curve' principle is suggested to be adopted in choosing the optimal regularization parameter. Finally, a numerical experiment is implemented with a section of Neumann and Dirichlet boundary conditions with observation errors. The results well converge to the exact solution of the problem, which proves the efficiency and robustness of the proposed method. When the order of observation error δ is 10-1, the order of the approximate result error can reach 10-3.
基金supported by Scientific Research Fund of Sichuan Provincial Education Department (09ZB102)Scientific Research Fund of Science and Technology Deportment of Sichuan Provincial (2011JYZ011)
文摘In this article, we introduce a hybrid iterative scheme for finding a common element of the set of solutions for a generalized equilibrium problems, the set of common fixed point for a family of infinite k-strict pseudo-contractive mappings, and the set of solutions of the variational inclusion problem with multi-valued maximal monotone mappings and inverse-strongly monotone mappings in Hilbert space. Under suitable conditions, some strong convergence theorems are proved. Our results extends the recent results in G.L.Acedo and H.K.Xu [2], Zhang, Lee and Chan [8], Wakahashi and Toyoda [9], Takahashi and Takahashi [I0] and S. S. Chang, H. W. Joseph Lee and C. K. Chan [II], S.Takahashi and W.Takahashi [12]. Moreover, the method of proof adopted in this article is different from those of [4] and [12].
文摘Semi-inverse method, which is an integration and an extension of Hu's try-and-error method, Chien's veighted residual method and Liu's systematic method, is proposed to establish generalized variational principles with multi-variables without arty variational crisis phenomenon. The method is to construct an energy trial-functional with an unknown function F, which can be readily identified by making the trial-functional stationary and using known constraint equations. As a result generalized variational principles with two kinds of independent variables (such as well-known Hellinger-Reissner variational principle and Hu-Washizu principle) and generalized variational principles with three kinds of independent variables (such as Chien's generalized variational principles) in elasticity have been deduced without using Lagrange multiplier method. By semi-inverse method, the author has also proved that Hu-Washizu principle is actually a variational principle with only two kinds of independent variables, stress-strain relations are still its constraints.
基金supported by the National Natural Science Foundation of China(Grant No.42277165)the Fundamental Research Funds for the Central Universities,China University of Geosciences(Wuhan)(Grant No.CUGCJ1821)the National Overseas Study Fund(Grant No.202106410040).
文摘As a calculation method based on the Galerkin variation,the numerical manifold method(NMM)adopts a double covering system,which can easily deal with discontinuous deformation problems and has a high calculation accuracy.Aiming at the thermo-mechanical(TM)coupling problem of fractured rock masses,this study uses the NMM to simulate the processes of crack initiation and propagation in a rock mass under the influence of temperature field,deduces related system equations,and proposes a penalty function method to deal with boundary conditions.Numerical examples are employed to confirm the effectiveness and high accuracy of this method.By the thermal stress analysis of a thick-walled cylinder(TWC),the simulation of cracking in the TWC under heating and cooling conditions,and the simulation of thermal cracking of the SwedishÄspöPillar Stability Experiment(APSE)rock column,the thermal stress,and TM coupling are obtained.The numerical simulation results are in good agreement with the test data and other numerical results,thus verifying the effectiveness of the NMM in dealing with thermal stress and crack propagation problems of fractured rock masses.
文摘The Lagrange multiplier method plays an important role in establishing generalized variational principles notonly in tluid mechallics. but also in elasticity. Sometimes, however, one may come across variational crisis(somemultipliers vanish identically). failing to achieve his aim. The crisis is caused by the fact that the Inultipliers are treatedas independent variables in the process of variatioll. but after identification they become functions of the originalindependent variables. To overcome it, a Inodified Lagrange multiplier method or semi-inverse method has beenproposed to deduce generalized varistional principles. Some e-camples are given to illustrate its convenience andeffectiveness of the novel method.
文摘Based on the nonlinear characiers of the discrete problems of some ellipticalvariational inequalities, this paper presents a numerical iterative method, the schemesof which are pithy and converge rapidly The new method possesses a high efficiency. insolving such applied engineering problems as obstacle problems and .free boundary.problems arising in fluid lubrications.
基金National Natural Science Foundation of China under Grant No.10172056
文摘One of the advantages of the variational iteration method is the free choice of initial guess. In this paper we use the basic idea of the Jacobian-function method to construct a generalized trial function with some unknown parameters. The Jaulent-Miodek equations are used to illustrate effectiveness and convenience of this method, some new explicit exact travelling wave solutions have been obtained, which include bell-type soliton solution, kink-type soliton solutions, solitary wave solutions, and doubly periodic wave solutions.
文摘The generalized variational data assimilation for non-differential dynamical systems is studied.There is no tangent linear model for non-differential systems and thus the general adjoint model can not be derived in the traditional way.The weak form of the original system was introduced, and then the generalized adjoint model was derived. The generalized variational data assimilation methods were developed for non-differential low dimensional system and non-differential high dimensional system with global and local observations. Furthermore, ideas in inverse problems are introduced to 4DVAR (Four-dimensional variational) of non-differential partial differential system with local observations.
文摘In order to solve variational inequality problems of pseudomonotonicity and Lipschitz continuity in Hilbert spaces, an inertial subgradient extragradient algorithm is proposed by virtue of non-monotone stepsizes. Moreover, weak convergence and R-linear convergence analyses of the algorithm are constructed under appropriate assumptions. Finally, the efficiency of the proposed algorithm is demonstrated through numerical implementations.