The shaping form of an untwisted yarn-end for the air splicer is analyzed and then a cosine curve form which will have practically good splicing effect is proposed. The yarn motion in the splicing nozzle by applying h...The shaping form of an untwisted yarn-end for the air splicer is analyzed and then a cosine curve form which will have practically good splicing effect is proposed. The yarn motion in the splicing nozzle by applying hydrodynamics and the splicing principle of the air splicer are also studied.展开更多
Splicing process parameters determined by dynamic characteristic of pneumatic actuator in air splicer have a significant influence on the performance of spliced yarn. Both gas thermodynamic and pneumatic actuator dyna...Splicing process parameters determined by dynamic characteristic of pneumatic actuator in air splicer have a significant influence on the performance of spliced yarn. Both gas thermodynamic and pneumatic actuator dynamic models, which were solved by the Runge-Kutta algorithm, were established to analyze the relationship among structural parameters of a pneumatic actuator and splicing process parameters such as splicing duration and gas consumption. Additionally,a visualization test bench to observe the dynamics of the pneumatic actuator and a mass flow measurement system to track splicing duration and gas consumption were designed. Comparisons between experimental data and simulation results show that the mathematical model accurately accounts for the dynamic characteristics of the pneumatic actuator,and consequently predicts splicing process parameters, which provides a theoretical foundation for the design optimization of air splicer.展开更多
文摘The shaping form of an untwisted yarn-end for the air splicer is analyzed and then a cosine curve form which will have practically good splicing effect is proposed. The yarn motion in the splicing nozzle by applying hydrodynamics and the splicing principle of the air splicer are also studied.
基金National Natural Science Foundation of China(No.51275482)Zhejiang Provincial Natural Science Foundation of China(No.LZ14E050004)the 521 Talent Project of Zhejiang Sci-Tech University,China
文摘Splicing process parameters determined by dynamic characteristic of pneumatic actuator in air splicer have a significant influence on the performance of spliced yarn. Both gas thermodynamic and pneumatic actuator dynamic models, which were solved by the Runge-Kutta algorithm, were established to analyze the relationship among structural parameters of a pneumatic actuator and splicing process parameters such as splicing duration and gas consumption. Additionally,a visualization test bench to observe the dynamics of the pneumatic actuator and a mass flow measurement system to track splicing duration and gas consumption were designed. Comparisons between experimental data and simulation results show that the mathematical model accurately accounts for the dynamic characteristics of the pneumatic actuator,and consequently predicts splicing process parameters, which provides a theoretical foundation for the design optimization of air splicer.