In this paper, a quadrature-free scheme of spline method for two-dimensional Navier- Stokes equation is derived, which can dramatically improve the efficiency of spline method for fluid problems proposed by Lai and We...In this paper, a quadrature-free scheme of spline method for two-dimensional Navier- Stokes equation is derived, which can dramatically improve the efficiency of spline method for fluid problems proposed by Lai and Wenston(2004). Additionally, the explicit formulation for boundary condition with up to second order derivatives is presented. The numerical simulations on several benchmark problems show that the scheme is very efficient.展开更多
We develop a numerical method for solving the boundary value problem of The Linear Seventh Ordinary Boundary Value Problem by using the seventh-degree B-Spline function. Formulation is based on particular terms of ord...We develop a numerical method for solving the boundary value problem of The Linear Seventh Ordinary Boundary Value Problem by using the seventh-degree B-Spline function. Formulation is based on particular terms of order of seventh order boundary value problem. We obtain Septic B-Spline formulation and the Collocation B-spline method is formulated as an approximation solution. We apply the presented method to solve an example of seventh order boundary value problem in which the result shows that there is an agreement between approximate solutions and exact solutions. Resulting in low absolute errors shows that the presented numerical method is effective for solving high order boundary value problems. Finally, a general conclusion has been included.展开更多
When analysing the thermal conductivity of magnetic fluids, the traditional Sharma-Tasso-Olver (STO) equation is crucial. The Sharma-Tasso-Olive equation’s approximate solution is the primary goal of this work. The q...When analysing the thermal conductivity of magnetic fluids, the traditional Sharma-Tasso-Olver (STO) equation is crucial. The Sharma-Tasso-Olive equation’s approximate solution is the primary goal of this work. The quintic B-spline collocation method is used for solving such nonlinear partial differential equations. The developed plan uses the collocation approach and finite difference method to solve the problem under consideration. The given problem is discretized in both time and space directions. Forward difference formula is used for temporal discretization. Collocation method is used for spatial discretization. Additionally, by using Von Neumann stability analysis, it is demonstrated that the devised scheme is stable and convergent with regard to time. Examining two analytical approaches to show the effectiveness and performance of our approximate solution.展开更多
This paper, we develop a numerical method for solving a unilateral obstacle problem by using the cubic spline collocation method and the generalized Newton method. This method converges quadratically if a relation-shi...This paper, we develop a numerical method for solving a unilateral obstacle problem by using the cubic spline collocation method and the generalized Newton method. This method converges quadratically if a relation-ship between the penalty parameter and the discretization parameter h is satisfied. An error estimate between the penalty solution and the discret penalty solution is provided. To validate the theoretical results, some numerical tests on one dimensional obstacle problem are presented.展开更多
In this piece of work, using three spatial grid points, we discuss a new two-level implicit cubic spline method of O(k2 + kh2 + h4) for the solution of quasi-linear parabolic equation , 0 0 subject to appropriate init...In this piece of work, using three spatial grid points, we discuss a new two-level implicit cubic spline method of O(k2 + kh2 + h4) for the solution of quasi-linear parabolic equation , 0 0 subject to appropriate initial and Dirichlet boundary conditions, where h > 0, k > 0 are grid sizes in space and time-directions, respectively. The cubic spline approximation produces at each time level a spline function which may be used to obtain the solution at any point in the range of the space variable. The proposed cubic spline method is applicable to parabolic equations having singularity. The stability analysis for diffusion- convection equation shows the unconditionally stable character of the cubic spline method. The numerical tests are performed and comparative results are provided to illustrate the usefulness of the proposed method.展开更多
A novel two level spline method is proposed for semi-linear elliptic equations, where the two level iteration is implemented between a pair of hierarchical spline spaces with different orders. The new two level method...A novel two level spline method is proposed for semi-linear elliptic equations, where the two level iteration is implemented between a pair of hierarchical spline spaces with different orders. The new two level method is implementation in a manner of p-adaptivity. A coarse solution is obtained from solving the model problem in the low order spline space, and the solution with higher accuracy are generated subsequently, via one step Newton or monidifed Newton iteration in the high order spline space. We also derive the optimal error estimations for the proposed two level schemes. At last, the illustrated numerical results confirm our error estimations and further research topics are commented.展开更多
In this paper, the bicubic splines in product form are used to construct the multi-field functions for bending moments, twisting moment and transverse displacement of the plate on elastic foundation. The multivariable...In this paper, the bicubic splines in product form are used to construct the multi-field functions for bending moments, twisting moment and transverse displacement of the plate on elastic foundation. The multivariable spline element equations are derived, based on the mixed variational principle. The analysis and calculations of bending, vibration and stability of the plates on elastic foundation are presented in the paper. Because the field functions of plate on elastic foundation are assumed independently, the precision of the field variables of bending moments and displacement is high.展开更多
Isoparametric quadrilateral elements are widely used in the finite element method, but the accuracy of the isoparametric quadrilateral elements will drop obviously deteriorate due to mesh distortions. Spline functions...Isoparametric quadrilateral elements are widely used in the finite element method, but the accuracy of the isoparametric quadrilateral elements will drop obviously deteriorate due to mesh distortions. Spline functions have some properties of simplicity and conformality. Two 8-node quadrilateral elements have been developed using the trian- gular area coordinates and the B-net method, which can ex- actly model the quadratic field for both convex and concave quadrangles. Some appropriate examples are employed to evaluate the performance of the proposed elements. The nu- merical results show that the two spline elements can obtain solutions which are highly accurate and insensitive to mesh distortions.展开更多
Application of spline element and state space method for analysis of dynamic response of elastic rectangular plates is presented. The spline element method is used for space domain and the state space method in contro...Application of spline element and state space method for analysis of dynamic response of elastic rectangular plates is presented. The spline element method is used for space domain and the state space method in control theory of system is used for time domain. A state variable recursive scheme is developed, then the dynamic response of structure can he calculated directly. Several numerical examples are given. The results which are presented to demonstrate the accuracy and efficiency of the present method are quite satisfactory.展开更多
In the view of Reissner's and Kirchhoff's theories, respectively, we formulate the isotropicalized governing equations for the anisotropic plates, and give the proof of the equivalence relation between these t...In the view of Reissner's and Kirchhoff's theories, respectively, we formulate the isotropicalized governing equations for the anisotropic plates, and give the proof of the equivalence relation between these two plate-models for the simply-supported rectangular orthotropic plates. The well-known fundamental solutions of the isotrqpic plates are utlized for the spline integral equation analysis of anisotropic plates.Even with sparse meshes the satisfactory results can be obtained. The analysis of plates on two-parameter elastic foundation is so simple as the common case that only a few terms should be added to the formulas of fictitious loads.展开更多
Rolling force and rolling moment are prime process parameter of external spline cold rolling. However, the precise theoretical formulae of rolling force and rolling moment are still very fewer, and the determination o...Rolling force and rolling moment are prime process parameter of external spline cold rolling. However, the precise theoretical formulae of rolling force and rolling moment are still very fewer, and the determination of them depends on experience. In the present study, the mathematical models of rolling force and rolling moment are established based on stress field theory of slip-line. And the isotropic hardening is used to improve the yield criterion. Based on MATLAB program language environment, calculation program is developed according to mathematical models established. The rolling force and rolling moment could be predicted quickly via the calculation program, and then the reliability of the models is validated by FEM. Within the range of module of spline m=0.5-1.5 mm, pressure angle of reference circle α=30.0°-45.0°, and number of spline teeth Z=19-54, the rolling force and rolling moment in rolling process (finishing rolling is excluded) are researched by means of virtualizing orthogonal experiment design. The results of the present study indicate that: the influences of module and number of spline teeth on the maximum rolling force and rolling moment in the process are remarkable; in the case of pressure angle of reference circle is little, module of spline is great, and number of spline teeth is little, the peak value of rolling force in rolling process may appear in the midst of the process; the peak value of rolling moment in rolling process appears in the midst of the process, and then oscillator weaken to a stable value. The results of the present study may provide guidelines for the determination of power of the motor and the design of hydraulic system of special machine, and provide basis for the farther researches on the precise forming process of external spline cold rolling.展开更多
A new numerical manifold (NMM) method is derived on the basis of quartic uniform B-spline interpolation. The analysis shows that the new interpolation function possesses higher-order continuity and polynomial consis...A new numerical manifold (NMM) method is derived on the basis of quartic uniform B-spline interpolation. The analysis shows that the new interpolation function possesses higher-order continuity and polynomial consistency compared with the conven- tional NMM. The stiffness matrix of the new element is well-conditioned. The proposed method is applied for the numerical example of thin plate bending. Based on the prin- ciple of minimum potential energy, the manifold matrices and equilibrium equation are deduced. Numerical results reveal that the NMM has high interpolation accuracy and rapid convergence for the global cover function and its higher-order partial derivatives.展开更多
In this paper, an approximate function for the Galerkin method is composed using the combination of the exponential B-spline functions. Regularized long wave equation (RLW) is integrated fully by using an exponentia...In this paper, an approximate function for the Galerkin method is composed using the combination of the exponential B-spline functions. Regularized long wave equation (RLW) is integrated fully by using an exponential B-spline Galerkin method in space together with Crank-Nicolson method in time. Three numerical examples related to propagation of sin- gle solitary wave, interaction of two solitary waves and wave generation are employed to illustrate the accuracy and the efficiency of the method. Obtained results are compared with some early studies.展开更多
This paper relates to the deep research on the Splinc Model Method of KED analysis. With the use of cubic B-splinc function as a link’s transverse deflection interpolation function, the principle of virtual displacem...This paper relates to the deep research on the Splinc Model Method of KED analysis. With the use of cubic B-splinc function as a link’s transverse deflection interpolation function, the principle of virtual displacement is presented as a basic theory for the general formulation of the equations of motion, and thus abandoned the kinematic assumption and the instantaneous structure assumption which arc used in the Spline Model Method. In thc same time, the nonlinear terms sue as coupling terms between thc rigid body motion and elastic deformation arc included. New member’s spline models are established. Mass matrix, Coriolis mass matrix, normal and tangential mass matrix, linear stiffness matrix, nonlinear stiffness matrix and rotation matrix arc derived. The kinematic differential equations of a member and system are deduced in the end. The Newmark direct integration method is used as the solution scheme of the kinematic differential equations to get the periodic response.展开更多
In general, triangular and quadrilateral elements are commonly applied in two-dimensional finite element methods. If they are used to compute polycrystalline materials, the cost of computation can be quite significant...In general, triangular and quadrilateral elements are commonly applied in two-dimensional finite element methods. If they are used to compute polycrystalline materials, the cost of computation can be quite significant. Polygonal elements can do well in simulation of the materials behavior and provide greater flexibility for the meshing of complex geometries. Hence, the study on the polygonal element is a very useful and necessary part in the finite element method. In this paper, an n-sided polygonal element based on quadratic spline interpolant, denoted by PS2 element, is presented using the triangular area coordinates and the B-net method. The PS2 element is conforming and can exactly model the quadratic field. It is valid for both convex and non-convex polygonal element, and insensitive to mesh distortions. In addition, no mapping or coordinate transformation is required and thus no Jacobian matrix and its inverse are evaluated. Some appropriate examples are employed to evaluate the performance of the proposed element.展开更多
It is difficult to obtain analytically the exact solution in the nonlinear analysis and stability investigation of thin shells due to the complexity of governing equations. Investigations have been focused on finding ...It is difficult to obtain analytically the exact solution in the nonlinear analysis and stability investigation of thin shells due to the complexity of governing equations. Investigations have been focused on finding approximate analytic solution or numerical solution by various approximate methods. These methods are only applicable to weak nonlinear problems, not to very nonlinear ones. The iteration method, per-展开更多
Non-singular fictitious boundary integral equations for orthotropic elastic plane problems were deduced according to boundary conditions by the techniques of singular-points-outside-domain. Then the unknown fictitious...Non-singular fictitious boundary integral equations for orthotropic elastic plane problems were deduced according to boundary conditions by the techniques of singular-points-outside-domain. Then the unknown fictitious load functions along the fictitious boundary were expressed in terms of basic spline functions, and the boundary-segment-least-squares method was proposed to eliminate the boundary residues obtained. By the above steps, numerical solutions to the integral equations can be achieved. Numerical examples are given to show the accuracy and efficiency of the proposed method.展开更多
We use fifth order B-spline functions to construct the numerical method for solving singularly perturbed boundary value problems. We use B-spline collocation method, which leads to a tri-diagonal linear system. The ac...We use fifth order B-spline functions to construct the numerical method for solving singularly perturbed boundary value problems. We use B-spline collocation method, which leads to a tri-diagonal linear system. The accuracy of the proposed method is demonstrated by test problems. The numerical results are found in good agreement with exact solutions.展开更多
A new finite element method (FEM) of B-spline wavelet on the interval (BSWI) is proposed. Through analyzing the scaling functions of BSWI in one dimension, the basic formula for 2D FEM of BSWI is deduced. The 2D F...A new finite element method (FEM) of B-spline wavelet on the interval (BSWI) is proposed. Through analyzing the scaling functions of BSWI in one dimension, the basic formula for 2D FEM of BSWI is deduced. The 2D FEM of 7 nodes and 10 nodes are constructed based on the basic formula. Using these proposed elements, the multiscale numerical model for foundation subjected to harmonic periodic load, the foundation model excited by external and internal dynamic load are studied. The results show the pro- posed finite elements have higher precision than the tradi- tional elements with 4 nodes. The proposed finite elements can describe the propagation of stress waves well whenever the foundation model excited by extemal or intemal dynamic load. The proposed finite elements can be also used to con- nect the multi-scale elements. And the proposed finite elements also have high precision to make multi-scale analysis for structure.展开更多
基金Supported by the National Basic Research Program(2005CB32170X)
文摘In this paper, a quadrature-free scheme of spline method for two-dimensional Navier- Stokes equation is derived, which can dramatically improve the efficiency of spline method for fluid problems proposed by Lai and Wenston(2004). Additionally, the explicit formulation for boundary condition with up to second order derivatives is presented. The numerical simulations on several benchmark problems show that the scheme is very efficient.
文摘We develop a numerical method for solving the boundary value problem of The Linear Seventh Ordinary Boundary Value Problem by using the seventh-degree B-Spline function. Formulation is based on particular terms of order of seventh order boundary value problem. We obtain Septic B-Spline formulation and the Collocation B-spline method is formulated as an approximation solution. We apply the presented method to solve an example of seventh order boundary value problem in which the result shows that there is an agreement between approximate solutions and exact solutions. Resulting in low absolute errors shows that the presented numerical method is effective for solving high order boundary value problems. Finally, a general conclusion has been included.
文摘When analysing the thermal conductivity of magnetic fluids, the traditional Sharma-Tasso-Olver (STO) equation is crucial. The Sharma-Tasso-Olive equation’s approximate solution is the primary goal of this work. The quintic B-spline collocation method is used for solving such nonlinear partial differential equations. The developed plan uses the collocation approach and finite difference method to solve the problem under consideration. The given problem is discretized in both time and space directions. Forward difference formula is used for temporal discretization. Collocation method is used for spatial discretization. Additionally, by using Von Neumann stability analysis, it is demonstrated that the devised scheme is stable and convergent with regard to time. Examining two analytical approaches to show the effectiveness and performance of our approximate solution.
文摘This paper, we develop a numerical method for solving a unilateral obstacle problem by using the cubic spline collocation method and the generalized Newton method. This method converges quadratically if a relation-ship between the penalty parameter and the discretization parameter h is satisfied. An error estimate between the penalty solution and the discret penalty solution is provided. To validate the theoretical results, some numerical tests on one dimensional obstacle problem are presented.
文摘In this piece of work, using three spatial grid points, we discuss a new two-level implicit cubic spline method of O(k2 + kh2 + h4) for the solution of quasi-linear parabolic equation , 0 0 subject to appropriate initial and Dirichlet boundary conditions, where h > 0, k > 0 are grid sizes in space and time-directions, respectively. The cubic spline approximation produces at each time level a spline function which may be used to obtain the solution at any point in the range of the space variable. The proposed cubic spline method is applicable to parabolic equations having singularity. The stability analysis for diffusion- convection equation shows the unconditionally stable character of the cubic spline method. The numerical tests are performed and comparative results are provided to illustrate the usefulness of the proposed method.
文摘A novel two level spline method is proposed for semi-linear elliptic equations, where the two level iteration is implemented between a pair of hierarchical spline spaces with different orders. The new two level method is implementation in a manner of p-adaptivity. A coarse solution is obtained from solving the model problem in the low order spline space, and the solution with higher accuracy are generated subsequently, via one step Newton or monidifed Newton iteration in the high order spline space. We also derive the optimal error estimations for the proposed two level schemes. At last, the illustrated numerical results confirm our error estimations and further research topics are commented.
文摘In this paper, the bicubic splines in product form are used to construct the multi-field functions for bending moments, twisting moment and transverse displacement of the plate on elastic foundation. The multivariable spline element equations are derived, based on the mixed variational principle. The analysis and calculations of bending, vibration and stability of the plates on elastic foundation are presented in the paper. Because the field functions of plate on elastic foundation are assumed independently, the precision of the field variables of bending moments and displacement is high.
基金supported by the National Natural Science Foundation of China(11001037,11102037 and 11290143)the Fundamental Research Funds for the Central Universities
文摘Isoparametric quadrilateral elements are widely used in the finite element method, but the accuracy of the isoparametric quadrilateral elements will drop obviously deteriorate due to mesh distortions. Spline functions have some properties of simplicity and conformality. Two 8-node quadrilateral elements have been developed using the trian- gular area coordinates and the B-net method, which can ex- actly model the quadratic field for both convex and concave quadrangles. Some appropriate examples are employed to evaluate the performance of the proposed elements. The nu- merical results show that the two spline elements can obtain solutions which are highly accurate and insensitive to mesh distortions.
文摘Application of spline element and state space method for analysis of dynamic response of elastic rectangular plates is presented. The spline element method is used for space domain and the state space method in control theory of system is used for time domain. A state variable recursive scheme is developed, then the dynamic response of structure can he calculated directly. Several numerical examples are given. The results which are presented to demonstrate the accuracy and efficiency of the present method are quite satisfactory.
文摘In the view of Reissner's and Kirchhoff's theories, respectively, we formulate the isotropicalized governing equations for the anisotropic plates, and give the proof of the equivalence relation between these two plate-models for the simply-supported rectangular orthotropic plates. The well-known fundamental solutions of the isotrqpic plates are utlized for the spline integral equation analysis of anisotropic plates.Even with sparse meshes the satisfactory results can be obtained. The analysis of plates on two-parameter elastic foundation is so simple as the common case that only a few terms should be added to the formulas of fictitious loads.
基金supported by National Natural Science Foundation of China (Grant No. 50675145)Shanxi Provincial Key Project of Science and Technology of China (Grant No. 2006031147)+1 种基金Shanxi Provincial Innovation Project for Graduate Students of China (Grant No. 20061027)Shanxi Provincial Key Project for Studied-abroad Returnee of China
文摘Rolling force and rolling moment are prime process parameter of external spline cold rolling. However, the precise theoretical formulae of rolling force and rolling moment are still very fewer, and the determination of them depends on experience. In the present study, the mathematical models of rolling force and rolling moment are established based on stress field theory of slip-line. And the isotropic hardening is used to improve the yield criterion. Based on MATLAB program language environment, calculation program is developed according to mathematical models established. The rolling force and rolling moment could be predicted quickly via the calculation program, and then the reliability of the models is validated by FEM. Within the range of module of spline m=0.5-1.5 mm, pressure angle of reference circle α=30.0°-45.0°, and number of spline teeth Z=19-54, the rolling force and rolling moment in rolling process (finishing rolling is excluded) are researched by means of virtualizing orthogonal experiment design. The results of the present study indicate that: the influences of module and number of spline teeth on the maximum rolling force and rolling moment in the process are remarkable; in the case of pressure angle of reference circle is little, module of spline is great, and number of spline teeth is little, the peak value of rolling force in rolling process may appear in the midst of the process; the peak value of rolling moment in rolling process appears in the midst of the process, and then oscillator weaken to a stable value. The results of the present study may provide guidelines for the determination of power of the motor and the design of hydraulic system of special machine, and provide basis for the farther researches on the precise forming process of external spline cold rolling.
基金supported by the Fund of National Engineering and Research Center for Highways in Mountain Area(No.gsgzj-2012-05)the Fundamental Research Funds for the Central Universities of China(No.CDJXS12240003)the Scientific Research Foundation of State Key Laboratory of Coal Mine Disaster Dynamics and Control(No.2011DA105287-MS201213)
文摘A new numerical manifold (NMM) method is derived on the basis of quartic uniform B-spline interpolation. The analysis shows that the new interpolation function possesses higher-order continuity and polynomial consistency compared with the conven- tional NMM. The stiffness matrix of the new element is well-conditioned. The proposed method is applied for the numerical example of thin plate bending. Based on the prin- ciple of minimum potential energy, the manifold matrices and equilibrium equation are deduced. Numerical results reveal that the NMM has high interpolation accuracy and rapid convergence for the global cover function and its higher-order partial derivatives.
基金supported by the Scientific and Technological Research Council of Turkey(Grant No.113F394)
文摘In this paper, an approximate function for the Galerkin method is composed using the combination of the exponential B-spline functions. Regularized long wave equation (RLW) is integrated fully by using an exponential B-spline Galerkin method in space together with Crank-Nicolson method in time. Three numerical examples related to propagation of sin- gle solitary wave, interaction of two solitary waves and wave generation are employed to illustrate the accuracy and the efficiency of the method. Obtained results are compared with some early studies.
文摘This paper relates to the deep research on the Splinc Model Method of KED analysis. With the use of cubic B-splinc function as a link’s transverse deflection interpolation function, the principle of virtual displacement is presented as a basic theory for the general formulation of the equations of motion, and thus abandoned the kinematic assumption and the instantaneous structure assumption which arc used in the Spline Model Method. In thc same time, the nonlinear terms sue as coupling terms between thc rigid body motion and elastic deformation arc included. New member’s spline models are established. Mass matrix, Coriolis mass matrix, normal and tangential mass matrix, linear stiffness matrix, nonlinear stiffness matrix and rotation matrix arc derived. The kinematic differential equations of a member and system are deduced in the end. The Newmark direct integration method is used as the solution scheme of the kinematic differential equations to get the periodic response.
基金supported by the National Natural Science Foundation of China (60533060, 10672032, 10726067)Science Foundation of Dalian University of Technology (SFDUT07001)
文摘In general, triangular and quadrilateral elements are commonly applied in two-dimensional finite element methods. If they are used to compute polycrystalline materials, the cost of computation can be quite significant. Polygonal elements can do well in simulation of the materials behavior and provide greater flexibility for the meshing of complex geometries. Hence, the study on the polygonal element is a very useful and necessary part in the finite element method. In this paper, an n-sided polygonal element based on quadratic spline interpolant, denoted by PS2 element, is presented using the triangular area coordinates and the B-net method. The PS2 element is conforming and can exactly model the quadratic field. It is valid for both convex and non-convex polygonal element, and insensitive to mesh distortions. In addition, no mapping or coordinate transformation is required and thus no Jacobian matrix and its inverse are evaluated. Some appropriate examples are employed to evaluate the performance of the proposed element.
基金Project supported by the National Natural Science Foundation of China.
文摘It is difficult to obtain analytically the exact solution in the nonlinear analysis and stability investigation of thin shells due to the complexity of governing equations. Investigations have been focused on finding approximate analytic solution or numerical solution by various approximate methods. These methods are only applicable to weak nonlinear problems, not to very nonlinear ones. The iteration method, per-
文摘Non-singular fictitious boundary integral equations for orthotropic elastic plane problems were deduced according to boundary conditions by the techniques of singular-points-outside-domain. Then the unknown fictitious load functions along the fictitious boundary were expressed in terms of basic spline functions, and the boundary-segment-least-squares method was proposed to eliminate the boundary residues obtained. By the above steps, numerical solutions to the integral equations can be achieved. Numerical examples are given to show the accuracy and efficiency of the proposed method.
文摘We use fifth order B-spline functions to construct the numerical method for solving singularly perturbed boundary value problems. We use B-spline collocation method, which leads to a tri-diagonal linear system. The accuracy of the proposed method is demonstrated by test problems. The numerical results are found in good agreement with exact solutions.
基金supported by the National Natural Science Foundation of China (51109029,51178081,51138001,and 51009020)the State Key Development Program for Basic Research of China (2013CB035905)
文摘A new finite element method (FEM) of B-spline wavelet on the interval (BSWI) is proposed. Through analyzing the scaling functions of BSWI in one dimension, the basic formula for 2D FEM of BSWI is deduced. The 2D FEM of 7 nodes and 10 nodes are constructed based on the basic formula. Using these proposed elements, the multiscale numerical model for foundation subjected to harmonic periodic load, the foundation model excited by external and internal dynamic load are studied. The results show the pro- posed finite elements have higher precision than the tradi- tional elements with 4 nodes. The proposed finite elements can describe the propagation of stress waves well whenever the foundation model excited by extemal or intemal dynamic load. The proposed finite elements can be also used to con- nect the multi-scale elements. And the proposed finite elements also have high precision to make multi-scale analysis for structure.