期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Analysis and test of splitting failure in the cutting process of cabbage root 被引量:5
1
作者 Du Dongdong Wang Jun Qiu Shanshan 《International Journal of Agricultural and Biological Engineering》 SCIE EI CAS 2015年第4期27-34,共8页
Cabbage harvester is very useful to replace the manual cabbage harvesting in China.The cutter with single-point clamping way can reduce the maximum and the average cutting force effectively,but may increase the splitt... Cabbage harvester is very useful to replace the manual cabbage harvesting in China.The cutter with single-point clamping way can reduce the maximum and the average cutting force effectively,but may increase the splitting failure.In this study,the mechanics model of cabbage root with single-point clamping way in cutting process was established.According to the analysis of mechanics model,when the sheer stress exceeded the sheer strength(τa>τ0),splitting failure began to occur.Meanwhile,if the maximum normal stress exceeded the tensile strength(σmax>σ0),the splitting failure would further become riving failure.The positions of splitting failure would almost locate at the cutting depth l equaled to R+r(l=R+r).To reduce the splitting failure,single factor and multi-factor cutting tests about the effect of sliding angle,cutting speed and cutting diameter on splitting failure were carried out.The results showed that the splitting failure would reduce with the increase of sliding angle,cutting speed and cutting diameter.Sliding angle,cutting speed,cutting diameter and the interactions of cutting speed with sliding angle and cutting diameter had significant effect on splitting failure level,and the interaction of sliding angle with cutting diameter and the 3 factors’interaction had no effect.To minimize splitting failure levels,the best cutting combination was that:sliding angle 40°,cutting speed 300 mm/min and cutting diameter 35 mm.This research can provide a basis of how to design a cutter for the cabbage harvester including the optimized cutting combination. 展开更多
关键词 CABBAGE cutting process splitting failure mechanics analysis TESTS
原文传递
TENSILE STRENGTH FOR SPLITTING FAILURE OF BRITTLE PARTICLES WITH CONSIDERATION OF POISSON'S RATIO
2
作者 GuomingHu YanminWang PingboXie 7hidongPan 《China Particuology》 SCIE EI CAS CSCD 2004年第6期241-247,共7页
The core mechanism of comminution could be reduced to the breakage of individual particles that occurs through contact with other particles or with the grinding media, or with the solid walls of the mill. When brittle... The core mechanism of comminution could be reduced to the breakage of individual particles that occurs through contact with other particles or with the grinding media, or with the solid walls of the mill. When brittle particles are loaded in compression or by impact, substantial tensile stresses are induced within the particles. These tensile stresses are responsible for splitting failure of brittle particles. Since many engineering materials have Poissons ratios very close to 0.3, the influence of Poissons ratio on the tensile strength is neglected in many studies. In this paper, the state of stress in a spherical particle due to two diametrically opposed forces is analyzed theoretically. A simple equation for the tensile stress at the centre of the particle is obtained. It is found reasonable to propose this tensile stress at the instant of failure as the tensile strength of the particle. Moreover, this tensile strength is a function of the Poissons ratio of the material. As the state of stress along the z-axis in an irregular specimen tends to be similar to that in a spherical particle compressed diametrically with the same force, this tensile strength has some validity for irregular particles as well. Therefore, it could be used as the tensile strength for brittle particles in general. The effect of Poissons ratio on the ten-sile strength is discussed. 展开更多
关键词 tensile strength Poissons ratio splitting failure brittle particle comminution
原文传递
Comparison of Estimated Cycle Split Failures from High-Resolution Controller Event and Connected Vehicle Trajectory Data
3
作者 Saumabha Gayen Enrique D. Saldivar-Carranza Darcy M. Bullock 《Journal of Transportation Technologies》 2023年第4期689-707,共19页
Current traffic signal split failure (SF) estimations derived from high-resolution controller event data rely on detector occupancy ratios and preset thresholds. The reliability of these techniques depends on the sele... Current traffic signal split failure (SF) estimations derived from high-resolution controller event data rely on detector occupancy ratios and preset thresholds. The reliability of these techniques depends on the selected thresholds, detector lengths, and vehicle arrival patterns. Connected vehicle (CV) trajectory data can more definitively show when a vehicle split fails by evaluating the number of stops it experiences as it approaches an intersection, but it has limited market penetration. This paper compares cycle-by-cycle SF estimations from both high-resolution controller event data and CV trajectory data, and evaluates the effect of data aggregation on SF agreement between the two techniques. Results indicate that, in general, split failure events identified from CV data are likely to also be captured from high-resolution data, but split failure events identified from high-resolution data are less likely to be captured from CV data. This is due to the CV market penetration rate (MPR) of ~5% being too low to capture representative data for every controller cycle. However, data aggregation can increase the ratio in which CV data captures split failure events. For example, day-of-week data aggregation increased the percentage of split failures identified with high-resolution data that were also captured with CV data from 35% to 56%. It is recommended that aggregated CV data be used to estimate SF as it provides conservative and actionable results without the limitations of intersection and detector configuration. As the CV MPR increases, the accuracy of CV-based SF estimation will also improve. 展开更多
关键词 Split failure Connected Vehicle Detector Traffic Signal Performance Measures Trajectory Data
下载PDF
Particle flow study on strength and meso-mechanism of Brazilian splitting test for jointed rock mass 被引量:18
4
作者 Sheng-Qi Yang Yan-Hua Huang 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2014年第4期547-558,共12页
A discrete element method (DEM) called particle flow code (PFC2D) was used to construct a model for Brazilian disc splitting test in the present study. Based on the experimental results of intact Brazilian disc of... A discrete element method (DEM) called particle flow code (PFC2D) was used to construct a model for Brazilian disc splitting test in the present study. Based on the experimental results of intact Brazilian disc of rock-like material, a set of micro-parameters in PFC2D that reflected the macro-mechanical behavior of rock-like materials were obtained. And then PFC2D was used to simulate Brazilian splitting test for jointed rock mass specimens and specimen containing a central straight notch. The effect of joint angle and notch angle on the tensile strength and failure mode of jointed rock specimens was detailed analyzed. In order to reveal the meso-mechanical mechanism of crack coalescence, displacement trend lines were applied to analyze the displacement evolution during the crack initiation and propagation. The investigated conclusions can be described as follows. (1) The tensile strength of jointed rock mass disc specimen is dependent to the joint angle. As the joint angle increases, the tensile strength of jointed rock specimen takes on a nonlinear variance. (2) The tensile strength of jointed rock mass disc specimen containing a central straight notch distributes as a function of both joint angle and notch angle. (3) Three major failure modes, i.e., pure tensile failure, shear failure and mixed tension and shear failure mode are observed in jointed rock mass disc specimens under Brazilian test. (4) The notch angle roles on crack initiation and and joint angle play important propagation characteristics of jointed rock mass disc specimen containing a central straight notch under Brazilian test. 展开更多
关键词 Jointed rock mass Brazilian splitting test. Ten-sile strength· failure mode PFC2D
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部