Spray-drying was used to produce the high emissivity NiCr2O4 powders with a spinel structure. Preliminary investigations focused on fabricating the high emissivity powders for infrared radiation coatings and finding t...Spray-drying was used to produce the high emissivity NiCr2O4 powders with a spinel structure. Preliminary investigations focused on fabricating the high emissivity powders for infrared radiation coatings and finding the relationship between microstructure and emissivity. The NiCr2O4 powders were characterized for composition, microstructure, and infrared emissivity by X-ray diffraction (XRD), scanning electron microscopy (SEM), infrared radiant instrument, and Fourier transform infrared spectra (FT-IR). Thermogravimetry and differential thermal analysis show that the appropriate baking temperature for NiCr2O4 powder preparation is about 1200?C. The emissivity measurement and FT-IR spectra show that, because of the special spinel structure, the NiCr2O4 powders have a high emissivity about 0.91. Spray-drying is a suitable method to produce the high emissivity ceramic powders.展开更多
Ovalbumin(OVA),the main protein in egg white,affects most of the functional properties of egg white protein in food processing.The aim of this study was to investigate the effects of spray drying(SD)and microwave free...Ovalbumin(OVA),the main protein in egg white,affects most of the functional properties of egg white protein in food processing.The aim of this study was to investigate the effects of spray drying(SD)and microwave freeze drying(MFD)on the preparation of hydrolyzed/glycosylated ovalbumin(HGOVA)and provide useful information on the applications of egg protein powders in the food industry.Results demonstrated that the structure of HGOVA was considerably changed,and its functional properties were improved compared with those of native OVA.SD and MFD processing did not lead to dissociation of HGOVA subunits.SD-HGOVA exhibited higher protein solubility,emulsifying activity,foaming capacities,and gel hardness than MFD-HGOVA.However,MFD-HGOVA was better than the SD-HGOVA in terms of color,emulsion stability,foam stability,water/oil absorption capacity,and thermal stability.Selection of an appropriate drying method could enhance the potential applications of HGOVA in the food industry.展开更多
Regular spherical chromium doped spinel lithium manganese oxides (LiCr0.04Mn1.96O4) with an average particle size of about 20μm were prepared by the slurry spray drying process. The materials were compared with non...Regular spherical chromium doped spinel lithium manganese oxides (LiCr0.04Mn1.96O4) with an average particle size of about 20μm were prepared by the slurry spray drying process. The materials were compared with non-spherical LiCr0.04Mnl.96O4 materials prepared by the common drying process, and all materials were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), laser particle analyzer and Brunaner-Emmett-Teller (BET) specific surface area test. Electrochemical performances of these cathode materials were studied by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and Li/LiCr0.04Mn1.9604 battery test. The results show that the spherical active material is single spinel structure, compact, and with narrow particle size distribution and low BET specific surface area. Compared with the non-spherical material, the spherical material prepared by the spray drying process shows a lower electrochemical impedance, a fewer electrochemical polarization and a better charge/discharge rate capability and capacity retention at elevated temperatures.展开更多
A dry flowable formulation of Clonostachys rosea with fungicidal activity against Sclerotinia sclerotiorum was prepared by spray drying. The formulation was optimized by a four-factor, three-level orthogonal experimen...A dry flowable formulation of Clonostachys rosea with fungicidal activity against Sclerotinia sclerotiorum was prepared by spray drying. The formulation was optimized by a four-factor, three-level orthogonal experiment to screen inert ingredients and spray-drying conditions. The optimal dry flowable formulation of C. rosea included 30% C. rosea (ratio of conidia powder and its fermentation broth is 1:3), 3% Morwet EFW, 4% K12, 10% Morwet D425, 9% sodium salt of polynaphthalene sulphonic acid (NNO), 5% croscarmellose sodium, 5% (NH4)2SO4, 0.5% carboxymethyl cellulose sodium (CMC-Na), 1% oxalic acid and palygorskite (carrier) up to 100%. The formulation exhibited good physical characteristics, such as high dispersibility, viability and a long shelf life. Plate antagonism tests and pot trials indicated that the dry flowable formulation was very effective against S. sclerotiorum, with control efficiency of up to 88.30%. This dry flowable formulation of C. rosea is a new potential commercial fungicide for spray drying to control S. sclerotiorum.展开更多
Y 0.9-xGd xEu 0.1BO 3 phosphors were synthesized by spray drying (SD) method, and the results were compared with those by conventional solid state (SS) and citrate gel (CG) methods. The PL intensity of phospho...Y 0.9-xGd xEu 0.1BO 3 phosphors were synthesized by spray drying (SD) method, and the results were compared with those by conventional solid state (SS) and citrate gel (CG) methods. The PL intensity of phosphors increases with the increase of x value in Y 0.9-xGd xEu 0.1BO 3 (prepared by SD) due to an energy migration process like Gd 3+-(Gd 3+) n-Eu 3+ occurred in the material. Compared with the latter two methods, the phosphor particles prepared by spray drying method have a better morphology, such as homogeneous size (about 1~3 μm) with spherical shape and smooth surface. Furthermore, the spray drying-derived phosphors have higher photoluminescence (PL) intensity than those by citrate gel method, but still a little lower than those by the solid state method.展开更多
The porous spherical LiFePO4/C powders were prepared by spray drying and carbothermal method (SDCTM). Cheaper trivalent iron ion was used as the precursor. The pure olivine phase can be prepared with the spray dryin...The porous spherical LiFePO4/C powders were prepared by spray drying and carbothermal method (SDCTM). Cheaper trivalent iron ion was used as the precursor. The pure olivine phase can be prepared with the spray drying and subsequent heat-treatment. The average particle size is around 10μm, and the value of porosity is 63.04%. The results indicate that the initial discharge capacity decreases with increasing charge/ discharge rate and reduces from 138.8 mAh · g^-1 at C/20 rate to 98.3 mAh ·g^-1 at 2C rate, while the polarization between the charge and discharge plateaux is enlarged from 53 mv to 347 mv. However, the average discharge efficiency is up to 99.5% at 2C rate compared to 80.6% at C/20 rate from the second cycle.展开更多
With concentrated juice of mulberry as raw material, the influence of type and dosage of dry aid, the inlet air tempera- ture, inlet flow rate, and rotating speed on spray drying was studied. The spray drying processi...With concentrated juice of mulberry as raw material, the influence of type and dosage of dry aid, the inlet air tempera- ture, inlet flow rate, and rotating speed on spray drying was studied. The spray drying processing conditions of mulberry pow- der were optimized by the L9 (3^4) orthogonal test on the basis of single factor experiment. The results showed that optimum technical parameters to produce mulberry powder were: lS-cyclodextrin as dry aids with dosage of 30%, inlet air temperature of 180 ℃, rotating speed of 18 000 r/min and inlet flow rate of 30 mL/min. The mulberry powder under this optimum process conditions had a loose structure and bright color, fruity flavor was rich, the anthocyanin content for 54.67 mg/g, moisture content for 5.6% and sensory scores for 83.展开更多
The graphene oxide powder(GOP)obtained from the spray drying process often exhibits poor redispersibility which is considered due to the partial reduction of GO sheets.The reduction of drying temperature can effective...The graphene oxide powder(GOP)obtained from the spray drying process often exhibits poor redispersibility which is considered due to the partial reduction of GO sheets.The reduction of drying temperature can effectively increase the redispersibility of GOP,but result in a decreased drying efficiency.Herein,we found that the redispersibility of GOP is strongly affected by its microstructure,which is determined by the feed concentration.With the increase of feed concentration,the GO nanosheet assembly varies from the disordered stacking to relatively oriented assembly,making the morphology of the GOP transform from balllike(the most crumpled one)to flakelike(the least crumpled one),and the 0.8 mgml 1 is the threshold concentration for the morphology,structure,and redispersibility change.Once the feed concentration reaches 0.8 mg ml 1,the appearance of the nematic phase in droplet ensures the relatively oriented assembly of GO sheets to form the layered structure with a low crumpling degree,which greatly improves the polar parts surface tension of the solid GOP,making the GOP easier to form hydrogen bonding with water during the redispersion process,thus stabilizing dispersion.This work provides useful information for understanding the relationships between the morphology,microstructure,and final redispersibility of GOPs.展开更多
Multifunctional fillers are greatly required for dental resin composites(DRCs).In this work,a spray dryer with a three-fluid nozzle was applied for the first time to construct high-performance complex nanoparticle clu...Multifunctional fillers are greatly required for dental resin composites(DRCs).In this work,a spray dryer with a three-fluid nozzle was applied for the first time to construct high-performance complex nanoparticle clusters(CNCs)consisting of different functional nanofillers for dental restoration.The application of a three-fluid nozzle can effectively avoid the aggregation of different nanoparticles with opposite zeta potentials before the spray drying process in order to construct regularly shaped CNCs.For a SiO_(2)–ZrO_(2) binary system,the SiO_(2)–ZrO_(2) CNCs constructed using a three-fluid nozzle maintained their excellent mechanical properties((133.3±4.7)MPa,(8.8±0.5)GPa,(371.1±13.3)MPa,and(64.5±0.7)HV for flexural strength,flexural modulus,compressive strength,and hardness of DRCs,respectively),despite the introduction of ZrO_(2) nanoparticles,whereas their counterparts constructed using a two-fluid nozzle showed significantly decreased mechanical properties.Furthermore,heat treatment of the SiO_(2)-ZrO_(2) CNCs significantly improved the mechanical properties and radiopacity of the DRCs.The DRCs containing over 10%mass fraction ZrO_(2) nanoparticles can meet the requirement for radiopaque fillers.More importantly,this method can be expanded to ternary or quaternary systems.DRCs filled with SiO_(2)-ZrO_(2)-ZnO CNCs with a ratio of 56:10:4 displayed high antibacterial activity(antibacterial ratio>99%)in addition to excellent mechanical properties and radiopacity.Thus,the three-fluid nozzle spray drying technique holds great potential for the efficient construction of multifunctional cluster fillers for DRCs.展开更多
Spray drying is an important continuous industrial process for drying pumpable liquid formulations irrespective of their heat sensitivity, rheology, solids content and processing rate. Furthermore spray drying has the...Spray drying is an important continuous industrial process for drying pumpable liquid formulations irrespective of their heat sensitivity, rheology, solids content and processing rate. Furthermore spray drying has the capability through drying chamber design, plant layout and mode of operation to produce dried products of specific particulate size and morphology. These are important aspects when spray drying technology is applied to the needs of customized powder manufacture. There are many examples in industry where spray dried powders have to meet stringent specifications set by such factors as end-product powder quality standards dictated by global competition,dry raw material characteristics required for optimum downstream processing, and dry materials handling to comply with environmental, health and safety issues. Spray drying is no longer regarded just as a convective industrial drying concept, but also as an integral part of modern manufacturing practices applying powder technology. This paper reviews the aspects of spray dryer design and operation for consideration when customized powder manufacture is involved.展开更多
[Objective] The aim was to study the microcapsulation of onion oil with double place separation-coacevation and spray drying. [Method] The effect of processing parameters which included the different wall material com...[Objective] The aim was to study the microcapsulation of onion oil with double place separation-coacevation and spray drying. [Method] The effect of processing parameters which included the different wall material combination,the ratio between the wall material,the core material content and the feed concentration on the efficiency and yield of microencapsulated was evaluated by single factor experiments. [Result] Through orthogonal optimization experiments, the optimum condition was as follows: the ratio of Arabic gum and maltodextrin ration was 1∶1, the core content was 25%, feed composition was 18%, and the microencapsulation efficiency and yield can reach 80.7% and 95.3% respectively. [Conclusion] The microcapsulaiton of onion oil with complex coacervation spray drying method can increase membrane thickness, improve core stability and prolong shelf life of products.展开更多
In this study, nanostructured microparticles was developed with polycaprolactone (PCL), poly(vinyl alcohol) (PVAL) and nanoparticles of the commercial sodium clay NT-25®by using the spray drying technique. The...In this study, nanostructured microparticles was developed with polycaprolactone (PCL), poly(vinyl alcohol) (PVAL) and nanoparticles of the commercial sodium clay NT-25®by using the spray drying technique. The systems obtained were characterized by Nuclear Magnetic Resonance (NMR), Scanning Electron Microscopy (SEM), Fourier Transform Infrared Spectroscopy (FTIR), X-ray Diffraction (XRD), Dynamic Laser Light Scattering (DLS) and Differential Scanning Calorimetry (DSC). The NMR <sup>13</sup>C and FTIR techniques showed that both polymers were present in the microparticles and the DSC analysis revealed a small variation in the glass transition temperature of the PCL. The XRD and SEM analyses showed that the microparticles produced were amorphous and had a concave morphology. The NT-25 nanoload reduced the microparticles’ size due to the multiple interactions formed in the hybrid nanocomposite material. Therefore, it was possible to develop microparticles by using biodegradable and biocompatible polymers, with different polarities, allowing the incorporation of hydrophilic and hydrophobic materials and enabling the inclusion of otherwise incompatible materials in the same system.展开更多
The effects of microwave sintering and conventional H2 sintering on the microstructure and properties of W-15Cu alloy using ultrafine W-15Cu composite powder fabricated by spray drying & calcining-continuous reductio...The effects of microwave sintering and conventional H2 sintering on the microstructure and properties of W-15Cu alloy using ultrafine W-15Cu composite powder fabricated by spray drying & calcining-continuous reduction technology were investigated. In comparison to the conventional HE sintering processing, microwave sintering to W-15Cu can be achieved at lower sintering temperature and shorter sintering time. Furthermore, higher performances in microwave sintered compacts were obtained, but high microwave sintering temperature or long microwave sintering time could result in coarser microstructures.展开更多
Enzymes have been used in detergents over the years. They can improve the detergent’s efficiency due to their activities against hard stains. Nevertheless, enzymes cannot maintain their properties indefinitely, since...Enzymes have been used in detergents over the years. They can improve the detergent’s efficiency due to their activities against hard stains. Nevertheless, enzymes cannot maintain their properties indefinitely, since they are exposed to stress factors, like temperature, pH, mechanical processes and others. Consequently, enzymes lose their structure and they are not functional. For this reason, microencapsulating these proteins is a feasible solution to improve their use in industrial processes and commercial products. Spray drying technology has been selected because a lot of scientific literature proved its useful application in a variety of industries. In particular, savinase and lipase are the two encapsulated enzymes in this work. Savinase attacks proteins and lipase removes fats, so they are suitable enzymes for detergent industry. Arabic gum has been used as wall material. Morphology, size and activity of the obtained microcapsules have been analyzed in order to find the best conditions to produce them. In conclusion, useful microcapsules of lipase and savinase can be obtained with the mentioned technology.展开更多
L-ascorbic acid is a water soluble vitamin (vitamin C) widely used as an additive in foods and cosmetics. It has high instability against certain environmental factors;the main cause of its deterioration is oxidation....L-ascorbic acid is a water soluble vitamin (vitamin C) widely used as an additive in foods and cosmetics. It has high instability against certain environmental factors;the main cause of its deterioration is oxidation. Microencapsulation is an effective protection technique of L-ascorbic acid from its degradation reactions. This work is focused on the encapsulation of L-ascorbic acid by spray drying technique using sodium alginate as wall material. The microcapsules morphology was observed by scanning electron microscopy (SEM) and the encapsulation efficiency was determined by spectrophotometric analysis. Results showed that encapsulation efficiency was of 93.48% and after 30 days was of 92.55%;differences were not significant, so that the stability of L-ascorbic acid was not affected. Encapsulation yields obtained were low, at around 30%, but the microcapsules morphology obtained is spherical.展开更多
In this work,the formation mechanism of the droplet-to-granule was investigated in detail based on mold powder manufacturing.A specific mathematical model of two-stage spray drying was established to describe droplet ...In this work,the formation mechanism of the droplet-to-granule was investigated in detail based on mold powder manufacturing.A specific mathematical model of two-stage spray drying was established to describe droplet and granule motion,heat and mass transfer,and granule morphology during spray drying.Then,the relationships between spray drying parameters(inlet temperature,atomization pres-sure,slurry mass flow rate)and the properties of the drying tower(temperature and velocity fields)and mold powder granules(temperature,evaporation rates,moisture content,and diameter)were simulated and calculated using ANSYS/Fluent software.To ensure that the granule size of mold powder was controlled within the ideal range(0.2-0.6 mm)for producing granules with appropriate mechanical and metallurgical properties,the following optimum spray drying parameters were chosen based on the results of the numerical simulation:inlet temperatures,873 K;slurry atomization pressure,1.8 MPa;slurry mass flow rate,0.05 kg s-1.Among these parameters,the slurry mass flow rate has the most significant effect on granule size.展开更多
The aggregation of inorganic particles with high mass ratio will form a heterogeneous electric field in the solid polymer electrolytes(SPEs),which is difficult to be compatible with lithium anode,leading to inadequate...The aggregation of inorganic particles with high mass ratio will form a heterogeneous electric field in the solid polymer electrolytes(SPEs),which is difficult to be compatible with lithium anode,leading to inadequate ionic conductivity.Herein,a facile spray drying method is adopted to increase the mass ratio of inorganic particles and solve the aggregation problems of fillers simultaneously.The polyvinylidene fluoride(PVDF)with lithium bis(trifluoromethanesulfonyl)imide(LiTFSI)covers the surface of each Li_(6.4)La_(3)Zr_(1.4)Ta_(0.6)O_(12)(LLZTO)granules during the nebulization process,then forming flat solid electrolytes via layer-by-layer deposition.Characterized by the atomic force microscope,the obtained solid electrolytes achieve a homogenous dispersion of Young’s modulus and surface electric field.As a result,the as-prepared SPEs present high tensile strength of 7.1 MPa,high ionic conductivity of 1.86×10^(−4)S·cm^(−1)at room temperature,and wide electrochemical window up to 5.0 V,demonstrating increased mechanical strength and uniform lithium-ion migration channels for SPEs.Thanks to the as-prepared SPEs,the lithiumsymmetrical cells show a highly stable Li plating/stripping cycling for over 1,000 h at 0.1 mA·cm^(−2).The corresponding Li/LCoO_(2)batteries also present good rate capability and excellent cyclic performance with capacity retention of 80%after 100 cycles at room temperature.展开更多
Silicon/flake graphite/carbon (Si/FG/C) composites were synthesized with different dispersants via spray drying and subsequent pyrolysis, and effects of dispersants on the characteristics of the composites were inve...Silicon/flake graphite/carbon (Si/FG/C) composites were synthesized with different dispersants via spray drying and subsequent pyrolysis, and effects of dispersants on the characteristics of the composites were investigated. The structure and properties of the composites were determined by X-ray diffractometry (XRD), scanning electron microscopy (SEM) and electrochemical measurements. The results show that samples have silicon/flake graphite/amorphous carbon composite structure, good spherical appearances, and better electrochemical performance than pure nano-Si and FG/C composites. Compared with the Si/FG/C composite using washing powder as dispersant, the Si/FG/C composite using sodium dodecyl benzene sulfonate (SDBS) as dispersant has better electrochemical performance with a reversible capacity of 602.68 mA·h/g, and a capacity retention ratio of 91.58 % after 20 cycles.展开更多
In order to enhance electrochemical properties of LiFePO4 (LFP) cathode materials, spherical porous nano/micro structured LFP/C cathode materials were synthesized by spray drying, followed by calcination. The result...In order to enhance electrochemical properties of LiFePO4 (LFP) cathode materials, spherical porous nano/micro structured LFP/C cathode materials were synthesized by spray drying, followed by calcination. The results show that the spherical precursors with the sizes of 0.5-5 μm can be completely converted to LFP/C when the calcination temperature is higher than 500 ℃. The LFP/C microspheres obtained at calcination temperature of 700 ℃ are composed of numerous particles with sizes of -20 nm, and have well-developed interconnected pore structure and large specific surface area of 28.77 mE/g. The specific discharge capacities of the LFP/C obtained at 700 ℃ are 162.43, 154.35 and 144.03 mA.h/g at 0.5C, 1C and 2C, respectively. Meanwhile, the capacity retentions can reach up to 100% after 50 cycles. The improved electrochemical properties of the materials are ascribed to a small Li+ diffusion resistance and special structure of LFP/C microspheres.展开更多
Spray drying is a typical method to produce particles in dry powder forms at industrial scale. Most spray-dried products often show a wide range of particle properties even within the same batch. At Monash University,...Spray drying is a typical method to produce particles in dry powder forms at industrial scale. Most spray-dried products often show a wide range of particle properties even within the same batch. At Monash University, we utilise a microfluidic spray drying approach to generate uniform microparticles with tightly controlled characteristics and sizes in a scalable, almost waste-flee process. The technique is useful to correlate the effects of formulation and spray drying conditions on the properties of spray-dried particles, and can be used to test new formulations for targeted applications such as encapsulation and release of active ingredients. The synthesis route can be applied to other self-assembling systems, includ- ing mesoporous, crystalline, and hierarchically structured microparticles. As spray drying is commonly used in commercial scales, the understanding of how functional particles are formed in relation to formulations and process conditions could assist in developing a cost effective, energy and material-efficient route to produce powders with better properties and ease of handling for more advanced applications such as selective adsorption and bio-separation.展开更多
文摘Spray-drying was used to produce the high emissivity NiCr2O4 powders with a spinel structure. Preliminary investigations focused on fabricating the high emissivity powders for infrared radiation coatings and finding the relationship between microstructure and emissivity. The NiCr2O4 powders were characterized for composition, microstructure, and infrared emissivity by X-ray diffraction (XRD), scanning electron microscopy (SEM), infrared radiant instrument, and Fourier transform infrared spectra (FT-IR). Thermogravimetry and differential thermal analysis show that the appropriate baking temperature for NiCr2O4 powder preparation is about 1200?C. The emissivity measurement and FT-IR spectra show that, because of the special spinel structure, the NiCr2O4 powders have a high emissivity about 0.91. Spray-drying is a suitable method to produce the high emissivity ceramic powders.
基金Natural Science Foundation of China(No.U1704114)Key Scientific Research Program of Henan Province(No.182102110346,161100110900).
文摘Ovalbumin(OVA),the main protein in egg white,affects most of the functional properties of egg white protein in food processing.The aim of this study was to investigate the effects of spray drying(SD)and microwave freeze drying(MFD)on the preparation of hydrolyzed/glycosylated ovalbumin(HGOVA)and provide useful information on the applications of egg protein powders in the food industry.Results demonstrated that the structure of HGOVA was considerably changed,and its functional properties were improved compared with those of native OVA.SD and MFD processing did not lead to dissociation of HGOVA subunits.SD-HGOVA exhibited higher protein solubility,emulsifying activity,foaming capacities,and gel hardness than MFD-HGOVA.However,MFD-HGOVA was better than the SD-HGOVA in terms of color,emulsion stability,foam stability,water/oil absorption capacity,and thermal stability.Selection of an appropriate drying method could enhance the potential applications of HGOVA in the food industry.
基金supported by the National High-Tech Research and Development Program of China(No.2006AA11A160)
文摘Regular spherical chromium doped spinel lithium manganese oxides (LiCr0.04Mn1.96O4) with an average particle size of about 20μm were prepared by the slurry spray drying process. The materials were compared with non-spherical LiCr0.04Mnl.96O4 materials prepared by the common drying process, and all materials were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), laser particle analyzer and Brunaner-Emmett-Teller (BET) specific surface area test. Electrochemical performances of these cathode materials were studied by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and Li/LiCr0.04Mn1.9604 battery test. The results show that the spherical active material is single spinel structure, compact, and with narrow particle size distribution and low BET specific surface area. Compared with the non-spherical material, the spherical material prepared by the spray drying process shows a lower electrochemical impedance, a fewer electrochemical polarization and a better charge/discharge rate capability and capacity retention at elevated temperatures.
基金supported by grants from the Fundamental Research Funds for the Central Universities, China (2572016DA02)the National Natural Science Foundation of China (31570642)the Science and Technology Innovation and Entrepreneurship Projects of Returned Overseas Personnel in Jilin Province, China (2013-36)
文摘A dry flowable formulation of Clonostachys rosea with fungicidal activity against Sclerotinia sclerotiorum was prepared by spray drying. The formulation was optimized by a four-factor, three-level orthogonal experiment to screen inert ingredients and spray-drying conditions. The optimal dry flowable formulation of C. rosea included 30% C. rosea (ratio of conidia powder and its fermentation broth is 1:3), 3% Morwet EFW, 4% K12, 10% Morwet D425, 9% sodium salt of polynaphthalene sulphonic acid (NNO), 5% croscarmellose sodium, 5% (NH4)2SO4, 0.5% carboxymethyl cellulose sodium (CMC-Na), 1% oxalic acid and palygorskite (carrier) up to 100%. The formulation exhibited good physical characteristics, such as high dispersibility, viability and a long shelf life. Plate antagonism tests and pot trials indicated that the dry flowable formulation was very effective against S. sclerotiorum, with control efficiency of up to 88.30%. This dry flowable formulation of C. rosea is a new potential commercial fungicide for spray drying to control S. sclerotiorum.
文摘Y 0.9-xGd xEu 0.1BO 3 phosphors were synthesized by spray drying (SD) method, and the results were compared with those by conventional solid state (SS) and citrate gel (CG) methods. The PL intensity of phosphors increases with the increase of x value in Y 0.9-xGd xEu 0.1BO 3 (prepared by SD) due to an energy migration process like Gd 3+-(Gd 3+) n-Eu 3+ occurred in the material. Compared with the latter two methods, the phosphor particles prepared by spray drying method have a better morphology, such as homogeneous size (about 1~3 μm) with spherical shape and smooth surface. Furthermore, the spray drying-derived phosphors have higher photoluminescence (PL) intensity than those by citrate gel method, but still a little lower than those by the solid state method.
文摘The porous spherical LiFePO4/C powders were prepared by spray drying and carbothermal method (SDCTM). Cheaper trivalent iron ion was used as the precursor. The pure olivine phase can be prepared with the spray drying and subsequent heat-treatment. The average particle size is around 10μm, and the value of porosity is 63.04%. The results indicate that the initial discharge capacity decreases with increasing charge/ discharge rate and reduces from 138.8 mAh · g^-1 at C/20 rate to 98.3 mAh ·g^-1 at 2C rate, while the polarization between the charge and discharge plateaux is enlarged from 53 mv to 347 mv. However, the average discharge efficiency is up to 99.5% at 2C rate compared to 80.6% at C/20 rate from the second cycle.
文摘With concentrated juice of mulberry as raw material, the influence of type and dosage of dry aid, the inlet air tempera- ture, inlet flow rate, and rotating speed on spray drying was studied. The spray drying processing conditions of mulberry pow- der were optimized by the L9 (3^4) orthogonal test on the basis of single factor experiment. The results showed that optimum technical parameters to produce mulberry powder were: lS-cyclodextrin as dry aids with dosage of 30%, inlet air temperature of 180 ℃, rotating speed of 18 000 r/min and inlet flow rate of 30 mL/min. The mulberry powder under this optimum process conditions had a loose structure and bright color, fruity flavor was rich, the anthocyanin content for 54.67 mg/g, moisture content for 5.6% and sensory scores for 83.
基金the National Key R&D Program of China(2019YFD1101200,2019YFD1101204)Natural Science Foundation of China(51772150)the Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)Jiangsu Provincial Key Research and Development Program(BE2018008-1).
文摘The graphene oxide powder(GOP)obtained from the spray drying process often exhibits poor redispersibility which is considered due to the partial reduction of GO sheets.The reduction of drying temperature can effectively increase the redispersibility of GOP,but result in a decreased drying efficiency.Herein,we found that the redispersibility of GOP is strongly affected by its microstructure,which is determined by the feed concentration.With the increase of feed concentration,the GO nanosheet assembly varies from the disordered stacking to relatively oriented assembly,making the morphology of the GOP transform from balllike(the most crumpled one)to flakelike(the least crumpled one),and the 0.8 mgml 1 is the threshold concentration for the morphology,structure,and redispersibility change.Once the feed concentration reaches 0.8 mg ml 1,the appearance of the nematic phase in droplet ensures the relatively oriented assembly of GO sheets to form the layered structure with a low crumpling degree,which greatly improves the polar parts surface tension of the solid GOP,making the GOP easier to form hydrogen bonding with water during the redispersion process,thus stabilizing dispersion.This work provides useful information for understanding the relationships between the morphology,microstructure,and final redispersibility of GOPs.
基金the National Key Research and Development Program of China(2016YFA0201701)the National Natural Science Foundation of China(21878015).
文摘Multifunctional fillers are greatly required for dental resin composites(DRCs).In this work,a spray dryer with a three-fluid nozzle was applied for the first time to construct high-performance complex nanoparticle clusters(CNCs)consisting of different functional nanofillers for dental restoration.The application of a three-fluid nozzle can effectively avoid the aggregation of different nanoparticles with opposite zeta potentials before the spray drying process in order to construct regularly shaped CNCs.For a SiO_(2)–ZrO_(2) binary system,the SiO_(2)–ZrO_(2) CNCs constructed using a three-fluid nozzle maintained their excellent mechanical properties((133.3±4.7)MPa,(8.8±0.5)GPa,(371.1±13.3)MPa,and(64.5±0.7)HV for flexural strength,flexural modulus,compressive strength,and hardness of DRCs,respectively),despite the introduction of ZrO_(2) nanoparticles,whereas their counterparts constructed using a two-fluid nozzle showed significantly decreased mechanical properties.Furthermore,heat treatment of the SiO_(2)-ZrO_(2) CNCs significantly improved the mechanical properties and radiopacity of the DRCs.The DRCs containing over 10%mass fraction ZrO_(2) nanoparticles can meet the requirement for radiopaque fillers.More importantly,this method can be expanded to ternary or quaternary systems.DRCs filled with SiO_(2)-ZrO_(2)-ZnO CNCs with a ratio of 56:10:4 displayed high antibacterial activity(antibacterial ratio>99%)in addition to excellent mechanical properties and radiopacity.Thus,the three-fluid nozzle spray drying technique holds great potential for the efficient construction of multifunctional cluster fillers for DRCs.
文摘Spray drying is an important continuous industrial process for drying pumpable liquid formulations irrespective of their heat sensitivity, rheology, solids content and processing rate. Furthermore spray drying has the capability through drying chamber design, plant layout and mode of operation to produce dried products of specific particulate size and morphology. These are important aspects when spray drying technology is applied to the needs of customized powder manufacture. There are many examples in industry where spray dried powders have to meet stringent specifications set by such factors as end-product powder quality standards dictated by global competition,dry raw material characteristics required for optimum downstream processing, and dry materials handling to comply with environmental, health and safety issues. Spray drying is no longer regarded just as a convective industrial drying concept, but also as an integral part of modern manufacturing practices applying powder technology. This paper reviews the aspects of spray dryer design and operation for consideration when customized powder manufacture is involved.
基金Supported by the Scientific Research Program for PostgraduateStudent in Weinan Normal Unviersity( 12YKZ040)
文摘[Objective] The aim was to study the microcapsulation of onion oil with double place separation-coacevation and spray drying. [Method] The effect of processing parameters which included the different wall material combination,the ratio between the wall material,the core material content and the feed concentration on the efficiency and yield of microencapsulated was evaluated by single factor experiments. [Result] Through orthogonal optimization experiments, the optimum condition was as follows: the ratio of Arabic gum and maltodextrin ration was 1∶1, the core content was 25%, feed composition was 18%, and the microencapsulation efficiency and yield can reach 80.7% and 95.3% respectively. [Conclusion] The microcapsulaiton of onion oil with complex coacervation spray drying method can increase membrane thickness, improve core stability and prolong shelf life of products.
文摘In this study, nanostructured microparticles was developed with polycaprolactone (PCL), poly(vinyl alcohol) (PVAL) and nanoparticles of the commercial sodium clay NT-25®by using the spray drying technique. The systems obtained were characterized by Nuclear Magnetic Resonance (NMR), Scanning Electron Microscopy (SEM), Fourier Transform Infrared Spectroscopy (FTIR), X-ray Diffraction (XRD), Dynamic Laser Light Scattering (DLS) and Differential Scanning Calorimetry (DSC). The NMR <sup>13</sup>C and FTIR techniques showed that both polymers were present in the microparticles and the DSC analysis revealed a small variation in the glass transition temperature of the PCL. The XRD and SEM analyses showed that the microparticles produced were amorphous and had a concave morphology. The NT-25 nanoload reduced the microparticles’ size due to the multiple interactions formed in the hybrid nanocomposite material. Therefore, it was possible to develop microparticles by using biodegradable and biocompatible polymers, with different polarities, allowing the incorporation of hydrophilic and hydrophobic materials and enabling the inclusion of otherwise incompatible materials in the same system.
基金Funded by the Project for Science and Technology Plan of Wuhan City(200910321092)the Youth Science Plan for Light of the Morning Sun of Wuhan City (200750731270)
文摘The effects of microwave sintering and conventional H2 sintering on the microstructure and properties of W-15Cu alloy using ultrafine W-15Cu composite powder fabricated by spray drying & calcining-continuous reduction technology were investigated. In comparison to the conventional HE sintering processing, microwave sintering to W-15Cu can be achieved at lower sintering temperature and shorter sintering time. Furthermore, higher performances in microwave sintered compacts were obtained, but high microwave sintering temperature or long microwave sintering time could result in coarser microstructures.
文摘Enzymes have been used in detergents over the years. They can improve the detergent’s efficiency due to their activities against hard stains. Nevertheless, enzymes cannot maintain their properties indefinitely, since they are exposed to stress factors, like temperature, pH, mechanical processes and others. Consequently, enzymes lose their structure and they are not functional. For this reason, microencapsulating these proteins is a feasible solution to improve their use in industrial processes and commercial products. Spray drying technology has been selected because a lot of scientific literature proved its useful application in a variety of industries. In particular, savinase and lipase are the two encapsulated enzymes in this work. Savinase attacks proteins and lipase removes fats, so they are suitable enzymes for detergent industry. Arabic gum has been used as wall material. Morphology, size and activity of the obtained microcapsules have been analyzed in order to find the best conditions to produce them. In conclusion, useful microcapsules of lipase and savinase can be obtained with the mentioned technology.
文摘L-ascorbic acid is a water soluble vitamin (vitamin C) widely used as an additive in foods and cosmetics. It has high instability against certain environmental factors;the main cause of its deterioration is oxidation. Microencapsulation is an effective protection technique of L-ascorbic acid from its degradation reactions. This work is focused on the encapsulation of L-ascorbic acid by spray drying technique using sodium alginate as wall material. The microcapsules morphology was observed by scanning electron microscopy (SEM) and the encapsulation efficiency was determined by spectrophotometric analysis. Results showed that encapsulation efficiency was of 93.48% and after 30 days was of 92.55%;differences were not significant, so that the stability of L-ascorbic acid was not affected. Encapsulation yields obtained were low, at around 30%, but the microcapsules morphology obtained is spherical.
基金the financial support from the National Natural Science Foundation of China(grant No.52274319)the Youth Foundation of Guizhou Academy of Sciences,China(grant No.202147).
文摘In this work,the formation mechanism of the droplet-to-granule was investigated in detail based on mold powder manufacturing.A specific mathematical model of two-stage spray drying was established to describe droplet and granule motion,heat and mass transfer,and granule morphology during spray drying.Then,the relationships between spray drying parameters(inlet temperature,atomization pres-sure,slurry mass flow rate)and the properties of the drying tower(temperature and velocity fields)and mold powder granules(temperature,evaporation rates,moisture content,and diameter)were simulated and calculated using ANSYS/Fluent software.To ensure that the granule size of mold powder was controlled within the ideal range(0.2-0.6 mm)for producing granules with appropriate mechanical and metallurgical properties,the following optimum spray drying parameters were chosen based on the results of the numerical simulation:inlet temperatures,873 K;slurry atomization pressure,1.8 MPa;slurry mass flow rate,0.05 kg s-1.Among these parameters,the slurry mass flow rate has the most significant effect on granule size.
基金the financial support from the National Natural Science Foundation of China(No.21805147).
文摘The aggregation of inorganic particles with high mass ratio will form a heterogeneous electric field in the solid polymer electrolytes(SPEs),which is difficult to be compatible with lithium anode,leading to inadequate ionic conductivity.Herein,a facile spray drying method is adopted to increase the mass ratio of inorganic particles and solve the aggregation problems of fillers simultaneously.The polyvinylidene fluoride(PVDF)with lithium bis(trifluoromethanesulfonyl)imide(LiTFSI)covers the surface of each Li_(6.4)La_(3)Zr_(1.4)Ta_(0.6)O_(12)(LLZTO)granules during the nebulization process,then forming flat solid electrolytes via layer-by-layer deposition.Characterized by the atomic force microscope,the obtained solid electrolytes achieve a homogenous dispersion of Young’s modulus and surface electric field.As a result,the as-prepared SPEs present high tensile strength of 7.1 MPa,high ionic conductivity of 1.86×10^(−4)S·cm^(−1)at room temperature,and wide electrochemical window up to 5.0 V,demonstrating increased mechanical strength and uniform lithium-ion migration channels for SPEs.Thanks to the as-prepared SPEs,the lithiumsymmetrical cells show a highly stable Li plating/stripping cycling for over 1,000 h at 0.1 mA·cm^(−2).The corresponding Li/LCoO_(2)batteries also present good rate capability and excellent cyclic performance with capacity retention of 80%after 100 cycles at room temperature.
基金Project(2011FJ1005)supported by the Science and Technology Programs of Hunan Province,China
文摘Silicon/flake graphite/carbon (Si/FG/C) composites were synthesized with different dispersants via spray drying and subsequent pyrolysis, and effects of dispersants on the characteristics of the composites were investigated. The structure and properties of the composites were determined by X-ray diffractometry (XRD), scanning electron microscopy (SEM) and electrochemical measurements. The results show that samples have silicon/flake graphite/amorphous carbon composite structure, good spherical appearances, and better electrochemical performance than pure nano-Si and FG/C composites. Compared with the Si/FG/C composite using washing powder as dispersant, the Si/FG/C composite using sodium dodecyl benzene sulfonate (SDBS) as dispersant has better electrochemical performance with a reversible capacity of 602.68 mA·h/g, and a capacity retention ratio of 91.58 % after 20 cycles.
基金Project(2013AA050901)supported by the National High-tech Research and Development Program of China
文摘In order to enhance electrochemical properties of LiFePO4 (LFP) cathode materials, spherical porous nano/micro structured LFP/C cathode materials were synthesized by spray drying, followed by calcination. The results show that the spherical precursors with the sizes of 0.5-5 μm can be completely converted to LFP/C when the calcination temperature is higher than 500 ℃. The LFP/C microspheres obtained at calcination temperature of 700 ℃ are composed of numerous particles with sizes of -20 nm, and have well-developed interconnected pore structure and large specific surface area of 28.77 mE/g. The specific discharge capacities of the LFP/C obtained at 700 ℃ are 162.43, 154.35 and 144.03 mA.h/g at 0.5C, 1C and 2C, respectively. Meanwhile, the capacity retentions can reach up to 100% after 50 cycles. The improved electrochemical properties of the materials are ascribed to a small Li+ diffusion resistance and special structure of LFP/C microspheres.
文摘Spray drying is a typical method to produce particles in dry powder forms at industrial scale. Most spray-dried products often show a wide range of particle properties even within the same batch. At Monash University, we utilise a microfluidic spray drying approach to generate uniform microparticles with tightly controlled characteristics and sizes in a scalable, almost waste-flee process. The technique is useful to correlate the effects of formulation and spray drying conditions on the properties of spray-dried particles, and can be used to test new formulations for targeted applications such as encapsulation and release of active ingredients. The synthesis route can be applied to other self-assembling systems, includ- ing mesoporous, crystalline, and hierarchically structured microparticles. As spray drying is commonly used in commercial scales, the understanding of how functional particles are formed in relation to formulations and process conditions could assist in developing a cost effective, energy and material-efficient route to produce powders with better properties and ease of handling for more advanced applications such as selective adsorption and bio-separation.